Citation: | HU Wei-dong, JI Jin-jia, LIU Rui-ting, WANG Wen-qi, Leo P. LIGTHART. Terahertz atmosphere remote sensing[J]. Chinese Optics, 2017, 10(5): 656-665. doi: 10.3788/CO.20171005.0656 |
[1] |
YAO J Q, WANG J L, ZHONG K, et al.. Study and outlook of THz radiation atmospheric propagation[J]. Journal of Optoelectronics·Laser, 2010, 21(10):1582-1588.(in Chinese)
|
[2] |
PETER H S. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3):910-928. doi: 10.1109/22.989974
|
[3] |
ZHANG J Q, XUE CH, GAO G, et al.. Development and trend of cloud and aerosol optical remote sensing instrument[J]. Chinese Optics, 2015, 8(5):679-698. doi: 10.3788/co.
|
[4] |
HU X H, LIU S T, PAN ZH D, et al.. The development of spaceborne shimmer detection instrument and its data application[J]. Chinese Optics, 2015, 8(3):350-359. doi: 10.3788/co.
|
[5] |
KLEIN U. Future satellite earth observation requirements and technology in millimetre and sub-millimetre wavelength region[C]. The 17th Int Symp on Space THz Technology, Paris, France, 2006:21-28.
|
[6] |
SOHN B J, CHUNG E S, SCHMETZ J, et al.. Estimating upper-tropospheric water vapor from SSM/T-2satellite measurements[J]. J. Appl. Meteor, 2003, 42:488-504. doi: 10.1175/1520-0450(2003)042<0488:EUTWVF>2.0.CO;2
|
[7] |
CLERBAUX C, TURQUETY S, COHEUR P. Infrared remote sensing of atmospheric composition and air quality:towards operational applications[J]. Comptes Rendus Geoscience, 2010, 342(4):349-356.
|
[8] |
WANG W, DONG J H, MENG Q Y. Development and trend of visible light remote sensing camera for Mars exploration[J]. Chinese Optics, 2014, 7(2):208-214.
|
[9] |
YING Y B, WANG J P, JIANG H Y. Inspecting diameter and defect area of fruit with machine vision[J]. Transactions of the CSAE, 2002, 18(5):216-220.
|
[10] |
WATERS J W, READ W G, FROIDEVAUX L, et al.. The UARS and EOS microwave limb sounder(MLS) experiments[J]. Journal of the Atmospheric Sciences, 1998, 56:194-218.
|
[11] |
WATERS J W, PECKHAM G E. The microwave limb sounder(MLS) experiments for UARS and EOS[J]. The International Society for Optical Engineering, 1991:543-546.
|
[12] |
PUMPHREY H C, CLARK H L, HARWOOD R S. Lower stratospheric water vapor measured by UARS MLS[J]. Geophysical Research Letters, 2000, 27(12):1691-1694. doi: 10.1029/1999GL011339
|
[13] |
BARATH F T, CHAVEZ M C, COFIELD R E, et al.. The upper atmosphere research satellite microwave limb sounder instrument[J]. J. Geophys Res, 1993, 98(10):751-762.
|
[14] |
BARON P, RICAUD P, et al.. Studies for the Odin sub-millimetre radiometer.Ⅱ:Retrieval methodology[J]. Canadian Journal of Physics, 2002, 80(4):341-356. doi: 10.1139/p01-150
|
[15] |
URBAN J, LAUTIE N, LE FLOCHMOEZ E, et al.. Odin/SMR limb observations of stratospheric trace gases:validation of N2O[J]. Journal of Geophysical Research, 2005, 110:D09301-D09320. https://core.ac.uk/display/70561256
|
[16] |
LI X Y, CHEN L F, SU L, et al.. Development of submillimeter wave edge detection[J]. Journal of Remote Sensing, 2013, 6:1325-1344.
|
[17] |
YANG ZH D, LU N M, SHI J M, et al.. Overview of FY-3 satellite payload and ground application systems[J]. Meteorological Science and Technology, 2013, 4:6-12. http://www.sciencedirect.com/science/article/pii/B9780127999487000050
|
[18] |
DONG Y H. FY-4 meteorological satellite and its application prospect[J]. Shanghai Aerospace, 2016, 2:1-8.
|
[19] |
FRANKLIN E K, STEVEN J W, ANDREW J H, et al.. Submillimeter-wave cloud ice radiometer:simulations of retrieval algorithm performance[J]. Journal of Geophysical Research, 2002, 107(D3):4028-4048. doi: 10.1029/2001JD000709
|
[20] |
VANEK M D, NOLT I G, TAPPAN N D, et al.. Far-infrared sensor for cirrus(FIRSC):an aircraft-based Fourier-transform spectrometer to measure cloud radiance[J]. Appl. Opt., 2001, 40(13):2169-2176. doi: 10.1364/AO.40.002169
|
[21] |
EVANS K F, WANG J R, RACETTE P E, et al.. Ice cloud retrievals and analysis with the compact scanning submillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE[J]. American Meteorological Society, 2005, 44:839-859. https://espo.nasa.gov/attrex/content/Ice_Cloud_Retrievals_and_Analysis_with_the_Compact_Scanning_Submillimeter_Imaging_Radiometer
|
[22] |
MARAZITA S M, BISHOP W L, HESLER J L, et al.. Integrated Ga As Schottky mixers by spin on dielectric wafer bonding[J]. IEEE Transactions on Electron Devices, 2000, 47(6):1152-1157. doi: 10.1109/16.842956
|
[23] |
MARSH S, ALDERMAN B, MATHESON D, et al. Design of low-cost 183 GHz subharmonic mixers for commercial applications[J]. IET Circuits, Devices and Systems, 2007, 1(1):1-6 doi: 10.1049/iet-cds:20060212
|
[24] |
TESSMANN A, LEUTHER A, SEHWOERER C, et al. Acoplanar 94 GHz low-noise amplifier MMIC using 0.07μm. metamorphie cascode HEMTs[C]. IEEE MTT-S International Microwave Symposium Digest, IEEE, 2003:1581-1584.
|
[25] |
BRYERTON E W, MEI X, KIM Y M, et al.. A W-band Low-Noise Amplifier with 22K noise temperature[C]. IEEE MTT-S International Microwave Symposium Digest, Boston, USA, 2009:681-684.
|
[26] |
LU D R, HSU Y C, KAO J C, et al.. A 75.5-to-120.5-GHz, high-gain CMOS low-noise amplifier[C]. IEEE MTT-S International Microwave Symposium Digest, Montreal, Canada, IEEE, 2012:1-3.
|
[27] |
HROBAK M, STERNS M, SCHRAMM M, et al.. Planar zero bias Schottky diode detector operating in the E-and W-band[C]. 2013 European Microwave Conference(EuMC), IEEE, 2013:179-182.
|
[28] |
LI S. Development of millimeter wave geophone[D]. Chengdu:University of Electronic Science and technology of China, 2008:59-77.
|
[29] |
XUE W. W band broadband direct detection receiving front-end[D]. Chengdu:University of Electronic Science and technology of China, 2013:39-50.
|
[30] |
AUSTON D H, SMITH P R. Cherenkov radiation from femtosecond optical pulses in elect ro-optic media[J]. Appl. Phys. Lett., 1984, 53(16):1555-1558. doi: 10.1103/PhysRevLett.53.1555
|
[31] |
FATTINGER CH, GRISCHKOWSKY D. Point source terahertz optics[J]. Appl. Phys. Lett., 1988, 53(16):1480-1482. doi: 10.1063/1.99971
|
[32] |
LEITENSTORFER S, HUNSCHE J, SHAH M C, et al.. Detectors and sources for ultrabroadband electro-optic sampling:experiment and theory[J]. Appl. Phys. Lett., 1999, 74(11):1516-1518. doi: 10.1063/1.123601
|
[33] |
KONO S, TANI M, GU P, et al.. Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses[J]. Appl. Phys. Lett., 2000, 77(25):4104-4106. doi: 10.1063/1.1333403
|
[34] |
HAJENIUS M. Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer[J]. Phys. Rev. Lett., 2006, 100(7):074507. https://repository.tudelft.nl/islandora/object/uuid:3c930069-6427-4fb0-a113-88758172c003/?collection=research
|
[35] |
SEMENOV A D, HUBERS H W, RICHTER H. Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers[J]. IEEE Appl. Superconductivity, 2003, 13(2):168-171. doi: 10.1109/TASC.2003.813672
|
[36] |
WHYBORN N D. Heterodyne instrument for FIRST(HIFI):preliminary design[J]. SPIE, 1998, 3357:336-347.
|
[37] |
KOMIYAMA S, ASTAFIEV O, ANTONOV V V, et al.. A single-photon detector in the far-infrared range[J]. Nature, 2000, 403(6768):405-407. doi: 10.1038/35000166
|
[38] |
ASTAFIEV O, KOMIYAMA S, KUT SUWA T, et al.. Single-photon detector in the microwave range[J]. Phys. Rev. Lett., 2002, 80(22):4250-4252.
|