Volume 10 Issue 5
Oct.  2017
Turn off MathJax
Article Contents
CAI Chen, ZHANG Yun-hong. Application of optical tweezers technology in physical chemistry characterization of aerosol[J]. Chinese Optics, 2017, 10(5): 641-655. doi: 10.3788/CO.20171005.0641
Citation: CAI Chen, ZHANG Yun-hong. Application of optical tweezers technology in physical chemistry characterization of aerosol[J]. Chinese Optics, 2017, 10(5): 641-655. doi: 10.3788/CO.20171005.0641

Application of optical tweezers technology in physical chemistry characterization of aerosol

doi: 10.3788/CO.20171005.0641
Funds:

National Natural Science Foundation of China 91544223

National Natural Science Foundation of China 21473009

More Information
  • Corresponding author: ZHANG Yun-hong, E-mail:yhz@bit.edu.cn
  • Received Date: 11 Apr 2017
  • Rev Recd Date: 13 May 2017
  • Publish Date: 01 Oct 2017
  • Investigation of thermodynamics and kinetics process of organic aerosol is a cross-cutting field of multidisciplinary research, in which core issues are non-ideal mixing, including volatility, liquid-liquid phase separation and non-equilibrium mass transfer kinetics. At present, the study of the accurate measurement of the relevant physical and chemical parameters of these processes enters the bottleneck period. The optical tweezers system allows the aerosol single particles to be in a suspended state, resulting in a high signal-to-noise ratio of the stimulated Raman spectra. The system has unique advantages in the study of the physical and chemical properties of aerosols and its atmospheric effects. The system has been widely used in the research of the hygroscopicity, volatility, water mass transfer kinetics, and liquid-liquid phase separation processes of organic and inorganic mixture system aerosol. In this review, the progress of laser aerosol single particle technology is reviewed, including the principle and technical means of optical tweezers technology and the measurement of key physical and chemical parameters of aerosols. The results show that on one hand, accurate results of important physical and chemical parameters can be obtained by optical tweezers; on the other hand, the state of suspended droplets can be simulated and measured in the actual environment, which provides important support for atmospheric science research and pollution control.

     

  • loading
  • [1]
    MAXWELL J C. Treatise on Electricity and Magnetism[M]. Oxford(UK):Clarendon Press, 1873.
    [2]
    LEBEDEV P N. Experimental examination of light pressure[J]. Annalen der Physik, 1901, 6:433. https://es.scribd.com/document/76312661/Experimental-Examination-of-Light-Pressure-Annalen-Der-Physik-Pyotr-Lebedev-1901-English
    [3]
    ASHKIN A, DZIEDZIC J M, BJORKHOLM J E, et al.. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optical Letter, 1986, 11(5):288-290. doi: 10.1364/OL.11.000288
    [4]
    POSCHL U. Atmospheric aerosols:composition, transformation, climate and health effects[J]. Angewandte Chemie International Edition, 2005, 44(46):7520-7540. doi: 10.1002/(ISSN)1521-3773
    [5]
    IPCC International Panel On Climate, Climate Change 2007-The Physical Science Basis:Working Group Ⅰ Contribution to the Fourth Assessment Report of the IPCC[M]. Cambridge(UK):Cambridge University Press, 2007.
    [6]
    JIMENEZ J L, CANAGARATNA M R, DONAHUE N M, et al.. Evolution of organic aerosols in the atmosphere[J]. Science, 2009, 326(5959):1525-1529. doi: 10.1126/science.1180353
    [7]
    HALLQUIST M, WENGER J C, BALTENSPERGER U, et al.. The formation, properties and impact of secondary organic aerosol:current and emerging issues[J]. Atmospheric Chemistry and Physics, 2009, 9(14):5155-5236. doi: 10.5194/acp-9-5155-2009
    [8]
    CHANG E I, PANKOW J F. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water-Part 2:consideration of phase separation effects by an X-UNIFAC model[J]. Atmospheric Environment, 2006, 40(33):6422-6436. doi: 10.1016/j.atmosenv.2006.04.031
    [9]
    ZUEND A, SEINFELD J H. Modeling the gas-particle partitioning of secondary organic aerosol:the importance of liquid-liquid phase separation[J]. Atmospheric Chemistry and Physics, 2012, 12(9):3857-3882. doi: 10.5194/acp-12-3857-2012
    [10]
    SONG M, MARCOLLI C, KRIEGER U K, et al.. Liquid-liquid phase separation in aerosol particles:dependence on O:C, organic functionalities, and compositional complexity[J]. Geophysical Research Letters, 2012, 39(19):L19801. http://authors.library.caltech.edu/35393/1/2012GL052807.pdf
    [11]
    POEHLKER C, WIEDEMANN K T, SINHA B, et al.. Biogenic potassium salt particles as seeds for secondary organic aerosol in the amazon[J]. Science, 2012, 337(6098):1075-1078. doi: 10.1126/science.1223264
    [12]
    YOU Y, RENBAUM-WOLFF L, CARRERAS-SOSPEDRA M, et al.. Images reveal that atmospheric particles can undergo liquid-liquid phase separations[J]. Proceedings of the National Academy of Sciences U.S.A., 2012, 109(33):13188-13193. doi: 10.1073/pnas.1206414109
    [13]
    ZOBRIST B, MARCOLLI C, PEDERNERA D A, et al.. Do atmospheric aerosols form glasses?[J]. Atmospheric Chemistry and Physics, 2008, 8(17):5221-5244. doi: 10.5194/acp-8-5221-2008
    [14]
    MIKHAILOV E, VLASENKO S, MARTIN S T, et al.. Amorphous and crystalline aerosol particles interacting with water vapor:conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations[J]. Atmospheric Chemistry and Physics, 2009, 9(24):9491-9522. doi: 10.5194/acp-9-9491-2009
    [15]
    SHIRAIWA M, AMMANN M, KOOP T, et al.. Gas uptake and chemical aging of semisolid organic aerosol particles[J]. Proceedings of the National Academy of Sciences U.S.A., 2011, 108(27):11003-11008. doi: 10.1073/pnas.1103045108
    [16]
    KOOP T, BOOKHOLD J, SHIRAIWA M, et al.. Glass transition and phase state of organic compounds:dependency on molecular properties and implications for secondary organic aerosols in the atmosphere[J]. Physical Chemistry Chemical Physics, 2011, 13(43):19238-19255. doi: 10.1039/c1cp22617g
    [17]
    VIRTANEN A, JOUTSENSAARI J, KOOP T, et al.. An amorphous solid state of biogenic secondary organic aerosol particles[J]. Nature, 2010, 467(7317):824-827. doi: 10.1038/nature09455
    [18]
    SAUKKO E, LAMBE A T, MASSOLI P, et al.. Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors[J]. Atmospheric Chemistry and Physics, 2012, 12(16):7517-7529. doi: 10.5194/acp-12-7517-2012
    [19]
    CAPPA C D, WILSON K R. Evolution of organic aerosol mass spectra upon heating:implications for OA phase and partitioning behavior[J]. Atmospheric Chemistry and Physics, 2011, 11(5):1895-1911. doi: 10.5194/acp-11-1895-2011
    [20]
    VADEN T D, IMRE D, BERANEK J, et al.. Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol[J]. Proceedings of the National Academy of Sciences U.S.A., 2011, 108(6):2190-2195. doi: 10.1073/pnas.1013391108
    [21]
    KALBERER M, PAULSEN D, SAX M, et al.. Identification of polymers as major components of atmospheric organic aerosols[J]. Science, 2004, 303(5664):1659-1662. doi: 10.1126/science.1092185
    [22]
    KANAKIDOU M, SEINFELD J H, PANDIS S N, et al.. Organic aerosol and global climate modelling:a review[J]. Atmospheric Chemistry and Physics, 2005, 5:1053-1123. doi: 10.5194/acp-5-1053-2005
    [23]
    MCFIGGANS G, TOPPING D O, BARLEY M H. The sensitivity of secondary organic aerosol component partitioning to the predictions of component properties-Part 1:A systematic evaluation of some available estimation techniques[J]. Atmospheric Chemistry and Physics, 2010, 10(21):10255-10272. doi: 10.5194/acp-10-10255-2010
    [24]
    SHIRAIWA M, SEINFELD J H. Equilibration timescale of atmospheric secondary organic aerosol partitioning[J]. Geophysical Research Letters, 2012, 39(24):L24801.
    [25]
    PERRAUD V, BRUNS E A, EZELL M J, et al.. Nonequilibrium atmospheric secondary organic aerosol formation and growth[J]. Proceedings of the National Academy of Sciences U.S.A., 2012, 109(8):2836-2841. doi: 10.1073/pnas.1119909109
    [26]
    HOPKINS R J, MITCHEM L, WARD A D, et al.. Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap[J]. Physical Chemistry Chemical Physics, 2004, 6(21):603-625.
    [27]
    CHRISTINE P. Optical tweezers:not just for physicists anymore[J]. Analytical Chemistry, 2009, 81:16-19. doi: 10.1021/ac8023203
    [28]
    WILLS J B, KNOX K J, REID J P. Optical control and characterization of aerosol[J]. Chemical Physics Letters, 2009, 481:153-165. doi: 10.1016/j.cplett.2009.09.020
    [29]
    ASHKIN A, DZIEDZIC J M. Observation of optical resonances of dielectric spheres by light scattering[J]. Applied Optics, 1981, 20:1803-1814. doi: 10.1364/AO.20.001803
    [30]
    BENNER R E, BARBER P W, OWEN J F, et al.. Observation of Structure Resonances in the Fluorescence Spectra from Microspheres[J]. Physical Review Letters, 1980, 44:475-478. doi: 10.1103/PhysRevLett.44.475
    [31]
    BOHREN C F, HUFFMAN D R. Absorption and Scattering of Light by Small Particles[M]. New York:John Wiley and Sons, Inc., 1983.
    [32]
    HILL S C, BENNER R E. Morphology-Dependent Resonances[M]//CHANG R K, BARBER P W. Optical Effects Associated with Small Particles, World Scientific Publishing Co. Pte Ltd., 1988.
    [33]
    EVERSOLE J D, LIN H B, CAMPILLO A J. Input-out resonance correlation in laser-induced emission from micro droplets[J]. J. Optical Society of America B-Optical Physics, 1995, 12:287-296. doi: 10.1364/JOSAB.12.000287
    [34]
    SYMES R, SAYER R M, REID J P. Cavity enhanced droplet spectroscopy:Principles, perspectives and prospects[J]. Physical Chemistry Chemical Physics, 2004, 6:474-487. doi: 10.1039/b313370b
    [35]
    BARTH H G. Modern Methods of Particle Size Analysis[M]. New York:John Willey & Sons, 1984:135-150.
    [36]
    MIE G. Beitrage zur Optik truber Medien, speziellkoloidaler Metallosungen[J]. Annalen der Physik, 1908, 25:377-445.
    [37]
    WRIEDT T. Mie theory 1908, on the mobile phone 2008[J]. J. Quantitative Spectroscopy and Radiative Transfer, 2008, 109:1543-1548. doi: 10.1016/j.jqsrt.2008.01.009
    [38]
    PÖSCHL U. Atmospheric Aerosols:composition, transformation, climate and health effects[J]. Angewandte Chemie International Edition, 2005, 44:7520-7540. doi: 10.1002/(ISSN)1521-3773
    [39]
    KANAKIDOU M, SEINFELD J H, PANDIS S N, et al.. Organic aerosol and global climate modeling:a review[J]. Atmospheric Chemistry and Physics, 2005, 5:1053-1123. doi: 10.5194/acp-5-1053-2005
    [40]
    BILDE M, PANDIS S N. Evaporation rates and vapor pressures of individual aerosol species formed in the atmospheric oxidation of α and β-pinene[J]. Environmental Science & Technology, 2001, 35:3344-3349. doi: 10.1021/es001946b
    [41]
    CHANG E I, PANKOW J F. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water-part 2:consideration of phase separation effects by an X-UNIFAC model[J]. Atmospheric Environment, 2006, 40(33):6422-6436. doi: 10.1016/j.atmosenv.2006.04.031
    [42]
    ZUEND A, SEINFELD J H. Modeling the gas-particle partitioning of secondary organic aerosol:the importance of liquid-liquid phase separation[J]. Atmospheric Chemistry and Physics, 2012, 12(9):3857-3882. doi: 10.5194/acp-12-3857-2012
    [43]
    PANKOW J F. Gas/particle partitioning of neutral and ionizing compounds to single and multi-phase aerosol particles.1.Unified modeling framework[J]. Atmospheric Environment, 2003, 37(24):3323-3333. doi: 10.1016/S1352-2310(03)00346-7
    [44]
    ZUEND A, SEINFELD J H. A practical method for the calculation of liquid-liquid equilibria in multicomponent organic-water-electrolyte systems using physicochemical constraints[J]. Fluid Phase Equlibria, 2013, 337:201-213. doi: 10.1016/j.fluid.2012.09.034
    [45]
    ZUEND A, MARCOLLI C, LUO B P, et al.. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients[J]. Atmospheric Chemistry and Physics, 2008, 8(16):4559-4593. doi: 10.5194/acp-8-4559-2008
    [46]
    ZUEND A, MARCOLLI C, BOOTH A M, et al.. New and extended parameterization of the thermodynamic model AIOMFAC:calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups[J]. Atmospheric Chemistry and Physics, 2011, 11(17):9155-9206. doi: 10.5194/acp-11-9155-2011
    [47]
    JIMENEZ J L, CANAGARATNA M R, DONAHUE N M, et al.. Evolution of organic aerosols in the atmosphere[J]. Science, 2009, 326(5959):1525-1529. doi: 10.1126/science.1180353
    [48]
    YOU Y, RENBAUM-WOLFF L, CARRERAS-SOSPEDRA M, et al.. Images reveal that atmospheric particles can undergo liquid-liquid phase separations[J]. Proceedings of the National Academy of Sciences U.S.A., 2012, 109(33):13188-13193. doi: 10.1073/pnas.1206414109
    [49]
    BERTRAM A K, MARTIN S T, HANNA S J, et al.. Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component[J]. Atmospheric Chemistry and Physics, 2011, 11(21):10995-11006. doi: 10.5194/acp-11-10995-2011
    [50]
    REID J P, DENNIS-SMITHER B J, KWAMENA N-O A. The morphology of aerosol particles consisting of hydrophobic and hydrophilic phases:hydrocarbons, alcohols and fatty acids as the hydrophobic component[J]. Physical Chemistry Chemical Physics, 2011, 13(34):15559-15572. doi: 10.1039/c1cp21510h
    [51]
    SONG M, MARCOLLI C, KRIEGER U K, et al.. Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles[J]. Atmospheric Chemistry and Physics, 2012, 12(5):2691-2712. doi: 10.5194/acp-12-2691-2012
    [52]
    SHIRAIWA M, PFRANG C, KOOP T, et al.. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds(KM-GAP):linking condensation, evaporation and chemical reactions of organics, oxidants and water[J]. Atmospheric Chemistry and Physics, 2012, 12(5):2777-2794. doi: 10.5194/acp-12-2777-2012
    [53]
    SMITH M L, KUWATA M, MARTIN S T. Secondary organic material produced by the dark ozonolysis of alpha-pinene minimally affects the deliquescence and efflorescence of ammonium sulfate[J]. Aerospace Science and Technology, 2011, 45(2):244-261. doi: 10.1080/02786826.2010.532178
    [54]
    MIKHAILOV E, VLASENKO S, MARTIN S T, et al.. Amorphous and crystalline aerosol particles interacting with water vapor:conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations[J]. Atmospheric Chemistry and Physics, 2009, 9(24):9491-9522. doi: 10.5194/acp-9-9491-2009
    [55]
    SHIRAIWA M, SEINFELD J H. Equilibration timescale of atmospheric secondary organic aerosol partitioning[J]. Geophysical Research Letters, 2012, 39(24):L24801.
    [56]
    ZUEND A, MARCOLLI C, LUO B P, et al.. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients[J]. Atmospheric Chemistry and Physics, 2008(8):4559. http://authors.library.caltech.edu/36057/1/acp-8-4559-2008.pdf
    [57]
    MITCHEM L, BUAJARERN J, WARD A D, et al.. A Strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation[J]. J. Physical Chemistry B, 2006, 110(28):13700-13703. doi: 10.1021/jp062874z
    [58]
    LAURAIN A M C, REID J P. Characterizing internally mixed insoluble organic inclusions in aqueous aerosol droplets and their influence on light absorption[J]. Journal of Physical Chemistry A, 2009, 113(25):7039-7047. doi: 10.1021/jp902248p
    [59]
    SONG M, MARCOLLI C, KRIEGER U K, et al.. Morphologies of mixed organic/inorganic/aqueous aerosol droplets[J]. Faraday Discussion, 2013, 165:289-316. doi: 10.1039/c3fd00049d
    [60]
    CIOBANU V G, MARCOLLI C, KRIEGER U K, et al.. Liquid-liquid phase separation in mixed organic/inorganic aerosol particles[J]. J. Physical Chemistry A, 2009, 113(41):10966-10978. doi: 10.1021/jp905054d
    [61]
    MARTIN S T. Transitions of aqueous atmospheric particles[J]. Chemical Review, 2000, 100:3403-3454. doi: 10.1021/cr990034t
    [62]
    ZOBRIST B, MARCOLLI C, PEDERNERA D A, et al.. Do atmospheric aerosols form glasses?[J]. Atmospheric Chemistry and Physics, 2008, 8:5221-5244. doi: 10.5194/acp-8-5221-2008
    [63]
    HUFFMAN J A, DOCHERTY K S, AIKEN A C, et al.. Chemically-resolved aerosol volatility measurements from two megacity field studies[J]. Atmospheric Chemistry and Physics, 2009, 9:7161-7182. doi: 10.5194/acp-9-7161-2009
    [64]
    POPE F P, DENNIS-SMITHER B J, GRIFFITHS P T, et al.. Studies of single aerosol particles containing malonic acid, glutaric acid, and their mixtures with sodium chloride. i. hygroscopic growth[J]. J. Physical Chemistry A, 2010, 114:5335-5341. doi: 10.1021/jp100059k?src=recsys
    [65]
    POPE F P, TONG H J, DENNIS-SMITHER B J, et al.. Studies of single aerosol particles containing malonic acid, glutaric acid, and their mixtures with sodium chloride.ii.liquid-state vapor pressures of the acids[J]. J. Physical Chemistry A, 2010, 114(37):10156-10165. doi: 10.1021/jp1052979
    [66]
    ZIEGER P, FIERZ-SCHMIDHAUSER R, GYSEL M, et al.. Effects of relative humidity on aerosol light scattering in the Arctic[J]. Atmospheric Chemistry and Physics, 2010, 10:3875-3890. doi: 10.5194/acp-10-3875-2010
    [67]
    HENZLER M, STOCK A, B L M. Adsorption on Ordered Surfaces on Ionic Solids and Thin Films[M]. Berlin:Springer, 1993.
    [68]
    TANG I N, MUNKELWITZ H R. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols[J]. Atmospheric Environment, 1993, 27A (4):467-473.
    [69]
    SHINDO H, OHASHI M, TATEISHI O, et al.. Atomic force microscopic observation of step movements on NaCl(001) and NaF(001) with the help of adsorbed water[J]. J. Chemical Society Faraday Transactions, 1997, 93(6):1169-1174. doi: 10.1039/a606256c
    [70]
    DAI Q, SALMERON M. Adsorption of water on NaCl (100) surfaces:role of atomic steps[J]. Journal of Physical Chemistry B, 1997, 101:1994-1998. doi: 10.1021/jp9625772
    [71]
    WISE M E, MARTIN S T, RUSSELL L M, et al.. Water uptake by NaCl particles prior to deliquescence and the phase rule[J]. Aerospace Science and Technology, 2008, 42:281-294. doi: 10.1080/02786820802047115
    [72]
    PÓSFAI M, BUSECK P R. Nature and climate effects of individual tropospheric aerosol particles[J]. Annual Review of Earth and Planetary Sciences, 2010, 38:17-43. doi: 10.1146/annurev.earth.031208.100032
    [73]
    CHENLO F, MOREIRA R, PEREIRA G, et al.. Viscosities of aqueous solutions of sucrose and sodium chloride of interest in osmotic dehydration processes[J]. J. Food Engineering, 2002, 54:347-352. doi: 10.1016/S0260-8774(01)00221-7
    [74]
    MCGRAW R, LEWIS E R. Deliquescence and efflorescence of small particles[J]. J. Chemical Physics, 2009, 131(19):194705. doi: 10.1063/1.3251056
    [75]
    REINHARDT A, EMMENEGGER C, GERRITS B, et al.. Ultrahigh mass resolution and accurate mass measurements as a tool to characterize oligomers in secondary organic aerosols[J]. Analytical Chemistry, 2007, 79:4074-4082. doi: 10.1021/ac062425v
    [76]
    BADGER C L, GEORGE I, GRIFFITHS P T, et al.. Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate[J]. Atmospheric Chemistry and Physics, 2006, 6:755-768. doi: 10.5194/acp-6-755-2006
    [77]
    CRUZ C N, PANDIS S N. Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol[J]. Environmental Science & Technology, 2000, 34:4313-4319.
    [78]
    KWAMENA N-O A, BUAJARERN J, REID J P. Equilibrium morphology of mixed organic/inorganic/aqueous aerosol droplets:investigating the effects of relative humidity and surfactants[J]. J. Physical Chemistry A, 2010, 114:5787-5795. doi: 10.1021/jp1003648
    [79]
    MIKHAILOV E, VLASENKO S, MARTIN S T, et al.. Amorphous and crystalline aerosol particles interacting with water vapor:conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations[J]. Atmospheric Chemistry and Physics, 2009, 9:9491-9522. doi: 10.5194/acp-9-9491-2009
    [80]
    HARGREAVES G, KWAMENA N O, ZHANG Y-H, et al.. Measurements of the equilibrium size of supersaturated aqueous sodium chloride droplets at low relative humidity using aerosol optical tweezers and an electrodynamic balance[J]. J. Physical Chemistry A, 2010, 114(4):1806-1815. doi: 10.1021/jp9095985
    [81]
    WALKER J S, WILLS J B, REID J P, et al.. Direct comparison of the hygroscopic properties of ammonium sulfate and sodium chloride aerosol at relative humidities approaching saturation[J]. J. Physical Chemistry A, 2010, 114(48):12682-12691. doi: 10.1021/jp107802y
    [82]
    SHIRAIWA M, ZUEND A, BERTRAM A K, et al.. Gas-particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology[J]. Physical Chemistry Chemical Physics, 2013, 15: 11441. doi: 10.1039/c3cp51595h
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views(2765) PDF downloads(413) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return