Citation: | LI An, WANG Liang-wei, GUO Shuai, LIU Rui-bin. Advances in signal enhancement mechanism and technology of laser induced breakdown spectroscopy[J]. Chinese Optics, 2017, 10(5): 619-640. doi: 10.3788/CO.20171005.0619 |
[1] |
侯冠宇, 王平, 佟存柱.激光诱导击穿光谱技术及应用研究进展[J].中国光学, 2013, 6(4):490-500. http://www.chineseoptics.net.cn/CN/abstract/abstract9001.shtml
HOU G Y, WANG P, TONG C ZH. Progress in laser-induced breakdown spectroscopy and its applications[J]. Chinese Optics, 2013, 6(4):490-500.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9001.shtml
|
[2] |
王琦, 董凤忠, 梁云仙.再加热双脉冲与单脉冲激光诱导Fe等离子体发射光谱实验对比研究[J].光学学报, 2011, 31(10):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201110051.htm
WANG Q, DONG F ZH, LIANG Y X. Experiment comparison investigation on emission spectra of reheating double and single pulses laser-induced Fe plasma[J]. Acta Optica Sinica, 2011, 31(10):1-7.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201110051.htm
|
[3] |
YU Y, ZHOU W D, SU X J. Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy[J]. Optics Communications, 2014, 333(333):62-66.
|
[4] |
FECHET P, MAUCHIEN P, WANGNER J F. Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy[J]. Analytica Chimica Acta, 2001, 429(2):269-278. doi: 10.1016/S0003-2670(00)01277-0
|
[5] |
胡振华, 张巧, 丁蕾.液体中Cu元素双脉冲激光诱导击穿光谱测量研究[J].量子电子学报, 2014, 31(1):99-106. http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710009&dbname=CJFDPREP
HU ZH H, ZHANG Q, DING L. Anaylysis of Cu in liquid jet using double pulse laser induced breakdown spectroscopy[J]. Chinese J. Quantum Electronics, 2014, 31(1):99-106.(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710009&dbname=CJFDPREP
|
[6] |
伏再喜, 张先燚, 李庆.Ni原子双飞秒脉冲激光诱导击穿光谱的信号增强研究[J].原子与分子物理学报, 2011, 28(6):1061-1066. http://www.cnki.com.cn/Article/CJFDTOTAL-YZYF201106016.htm
FU Z X, ZHANG X Y, LI Q. Investigation on the signal enhancement of the double fetosecond pulse laser-induced breakdown spectroscopy of nickel[J]. J. Atomic and Molecular Physics, 2011, 28(6):1061-1066, (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YZYF201106016.htm
|
[7] |
王猛猛. 双脉冲飞秒激光诱导击穿光谱的研究[D]. 北京: 北京理工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10007-1016710571.htm
WANG M M. Double pulse femtosecond laser induced breakdown spectroscopy[D]. Beijing:Beijing Insititute of Technology, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10007-1016710571.htm
|
[8] |
SCHIFFERN J T, DOERR D W, ALEXANDER D R. Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2007, 62(12):1412-1418. doi: 10.1016/j.sab.2007.10.042
|
[9] |
PINON V, FOTAKIS C, NICOLAS G. Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2008, 63(10):1006-1010. doi: 10.1016/j.sab.2008.09.004
|
[10] |
AHMED R, BAIG M A. A comparative study of enhanced emission in double pulse laser induced breakdown spectroscopy[J]. Optics & Laser Technology, 2015, 65:113-118.
|
[11] |
PINON V, ANGLOS D. Optical emission studies of plasma induced by single and double femtosecond laser pulses[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2009, 64(10):950-960. doi: 10.1016/j.sab.2009.07.036
|
[12] |
CHICHKOV B N, MOMMA C, ALVENSLEBEN F V. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2):109-115. doi: 10.1007/BF01567637
|
[13] |
GAMALY E G, RODE A V, TIKHONCHUK V T. Electrostatic mechanism of ablation by femtosecond lasers[J]. Applied Surface Science, 2002, 9(1):699-704. http://www.academia.edu/12184598/Electrostatic_mechanism_of_ablation_by_femtosecond_lasers
|
[14] |
NASSEF O A, ELSAYED H E. Spark discharge assisted laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2005, 60(12):1564-1572. doi: 10.1016/j.sab.2005.10.010
|
[15] |
ZHOU W D, LI K X, SHEN Q. Optical emission enhancement using laser ablation combined with fast pulse discharge[J]. Optics Express, 2010, 18(3):2573-2578. doi: 10.1364/OE.18.002573
|
[16] |
LI X, ZHOU W D, LI K X. Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil[J]. Optics Communications, 2012, 285(1):54-58. doi: 10.1016/j.optcom.2011.08.074
|
[17] |
ZHOU W D, QIAN H, REN Z. Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy[J]. Applied Optics, 2012, 51(7):42-48. doi: 10.1364/AO.51.000B42
|
[18] |
ZHOU W D, SU X J, QIAN H. Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma[J]. J. Analytical Atomic Spectrometry, 2013, 28(5):702-710. doi: 10.1039/c3ja30355a
|
[19] |
VINIC M, IVKOVIC M. Spatial and temporal characteristics of laser ablation combined with fast pulse discharge[J]. IEEE Transactions on Plasma Science, 2014, 42(10):2598-2599. doi: 10.1109/TPS.2014.2330372
|
[20] |
SOBBRAL H, ROBLEDO M A. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2016, 124:67-73. doi: 10.1016/j.sab.2016.08.017
|
[21] |
HOU Z, WANG Z, LIU J. Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy[J]. Optics Express, 2014, 22(11):12909-14. doi: 10.1364/OE.22.012909
|
[22] |
陈金忠, 马瑞玲, 陈振玉.碳室约束对激光等离子体辐射的增强效应[J].光学精密工程, 2013, 21(8):1942-1948. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201308005.htm
CHEN J ZH, MA R L, CHEN ZH Y. Enhancement effect of carbon chamber confinement on laser plasma radiation[J]. Opt. Precision Eng., 2013, 21(8):1942-1948.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201308005.htm
|
[23] |
POPOV A M, COLAO F, FANTONNI R. Enhancement of LIBS signal by spatially confining the laser-induced plasma[J]. J. Analytical Atomic Spectrometr, 2009, 24(5):602-604. doi: 10.1039/b818849a
|
[24] |
GUO L B, HAO Z Q, SHEN M. Accuracy improvement of quantitative analysis by spatial confinement in Laser induced breakdown spectroscopy[J]. Optics Express, 2013, 21(15).
|
[25] |
MENT D S, ZHAO N J, MA M J. Heavy metal detection in soils by LIBS using hemispherical spatial confinement[J]. Plasma Science and Technology, 2015, 17(8):632-637. doi: 10.1088/1009-0630/17/8/04
|
[26] |
SU X, ZHOU W D, QIAN H. Optical emission character of collinear dual pulse laser plasma with cylindrical cavity confinement[J]. J. Analytical Atomic Spectrometry, 2014, 29(12):2356-2361. doi: 10.1039/C4JA00296B
|
[27] |
SU X J, ZHOU W D, QIAN H. Optimization of cavity size for spatial confined laser-induced breakdown spectroscopy[J]. Optics Express, 2014, 22(23):28437-28442. doi: 10.1364/OE.22.028437
|
[28] |
SINGH S C, FALLON C, HAYDEN P. Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas[J]. Physics Plasmas, 2014, 21(9):897-902. http://www.academia.edu/23089748/Ion_flux_enhancements_and_oscillations_in_spatially_confined_laser_produced_aluminum_plasmas
|
[29] |
WANG Y, CHEN A, LI S. Two sequential enhancements of laser-induced Cu plasma with cylindrical cavity confinement[J]. J. Analytical Atomic Spectrometry, 2016, 31:1974-1977. doi: 10.1039/C6JA00260A
|
[30] |
LI C, GUO L B, HE X. Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement[J]. J. Analytical Atomic Spectrometry, 2014, 29(4):638-643. doi: 10.1039/c3ja50368b
|
[31] |
WANG Z, HOU Z, LIU S L. Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal[J]. Optics Express, 2012, 20(23):1011-1018. http://adsabs.harvard.edu/abs/2012OExpr..20A1011W
|
[32] |
LI X, WANG Z, MAO X. Spatially and temporally resolved spectral emission of laser-induced plasmas confined by cylindrical cavities[J]. J. Analytical Atomic Spectrometry, 2014, 2(3):213-218.
|
[33] |
YIN H, HOU Z, WANG Z. Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability[J]. J. Analytical Atomic Spectrometry, 2015, 30(4):922-928. doi: 10.1039/C4JA00437J
|
[34] |
FU Y, HOU Z, WANG Z. Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy[J]. Optics Express, 2016, 24(3):3055-3066. doi: 10.1364/OE.24.003055
|
[35] |
LI X, YIN H, WANG Z.Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2015, 111(4):102-107.
|
[36] |
SHEN X K, LING H, LU Y F. Laser-induced breakdown spectroscopy with high detection sensitivity[J]. SPIE, 2009, 7202:7202D-1-11. https://nebraska.pure.elsevier.com/en/publications/laser-induced-breakdown-spectroscopy-with-high-detection-sensitiv
|
[37] |
SHEN X K, SUN J, LING H. Spatial confinement effects in laser-induced breakdown spectroscopy[J]. Applied Physics Letters, 2007, 91(8):081501-081501-3. doi: 10.1063/1.2770772
|
[38] |
HUANG F, LIANG P, YANG X.Confinement effects of shock waves on laser-induced plasma from a graphite target[J]. Physics Plasmas, 2015, 22(6):063509-1-7. doi: 10.1063/1.4922850
|
[39] |
LI C, WANG J, WANG X. Shock wave confinement-induced plume temperature increase in laser-induced breakdown spectroscopy[J]. Physics Letters A, 2014, 378(45):3319-3325. doi: 10.1016/j.physleta.2014.06.049
|
[40] |
GACEK S, WANG X. Dynamics evolution of shock waves in laser material interaction[J]. Applied Physics A, 2008, 94(3):675-690. doi: 10.1007%2Fs00339-008-4958-4.pdf
|
[41] |
LI C, ZHANG J, WANG X. Phase change and stress wave in picosecond laser material interaction with shock wave formation[J]. Applied Physics A, 2013, 112(3):677-687. doi: 10.1007/s00339-013-7770-8
|
[42] |
MARPAUNG A M, KURNIAWAN H, TJIA M O. Comprehensive study on the pressure dependence of shock wave plasma generation under TEA CO2 laser bombardment on metal sample[J]. J. Physics D Applied Physics, 2001, 34(34):758-771. doi: 10.1007/s00231-010-0742-z
|
[43] |
MARPAUNG A M, HEDWIG R, PARDEDE M. Shock wave plasma induced by TEA CO2 laser bombardment on glass samples at high pressures[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2000, 55(55):1591-1599. http://unsyiah.academia.edu/NasrullahIdris
|
[44] |
BOBIN J L, DURAND Y A, LANGER P P. Shock-wave generation in rarefied gases by laser impact on beryllium targets[J]. J. Applied Physics, 1968, 39(9):4184-4189. doi: 10.1063/1.1656945
|
[45] |
NEOGI A, THAREJA R K. Dynamics of laser produced carbon plasma expanding in a nonuniform magnetic field[J]. J. Applied Physics, 1999, 85(2):1131-1136. doi: 10.1063/1.369238
|
[46] |
BEHERA N, SINGH R K, KUMAR A. Dynamics and structural behaviour of laser induced plasma in transverse magnetic field[C]. DAE-BRNS National Laser Symposium(NLS-23), S.V. University, Tirupati, India, 3-6 Dec 2014, 2014.
|
[47] |
BEHERA N, SINGH R K, KUMAR A. Confinement and re-expansion of laser induced plasma in transverse magnetic field:Dynamical behaviour and geometrical aspect of expanding plume[J]. Physics Letters A, 2015, 379(37):2215-2220. doi: 10.1016/j.physleta.2015.04.042
|
[48] |
RAI V N, SINGH P J, YUEH F Y. Dynamics, stability and emission of radiation from laser produced plasma expanding across an external magnetic field[J]. Casopís Lékarů Ceských, 2001, 113(1):281-2822.
|
[49] |
RAI V N, VIRENDRA N, SINGH P. Study of optical emission from laser-produced plasma expanding across an external magnetic field[J]. Laser & Particle Beams, 2003, 21(1):65-71.
|
[50] |
RAI V N, RAI A K, YUEH F Y. Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field[J]. Applied Optics, 2003, 42(12):2085-2093. doi: 10.1364/AO.42.002085
|
[51] |
MASON K J, GOLDBERG J M. Characterization of a laser plasma in a pulsed magnetic field. part Ⅰ:spatially resolved emission studies[J]. Applied Spectroscopy, 1991, 45(3):370-379. doi: 10.1366/0003702914337362
|
[52] |
RAI V N, SHUKLA M, PANT H C. An X-ray biplanar photodiode and the X-ray emission from magnetically confined laser produced plasma[J]. Pramana, 1999, 52(1):49-65. doi: 10.1007/BF02827601
|
[53] |
SHEN X K, LU Y F, CEBRE T. Magnetically-confined laser-induced breakdown spectroscopy[C]. Cnference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, IEEE, 2006, DOI:10.1109/CLEO.2006.4628591.
|
[54] |
SINGLETON J, MIELKE C H, MIGLIORI A. The national high magnetic field laboratory pulsed-field facility at los alamos national laboratory[J]. Physica B Condensed Matter, 2004, 346-347:614-617. doi: 10.1016/j.physb.2004.01.068
|
[55] |
SHEN X K, LU X F, GEBRE T. Optical emission in magnetically confined laser-induced breakdown spectroscopy[J]. J. Applied Physics, 2006, 100(5):053303-053303-7. doi: 10.1063/1.2337169
|
[56] |
HARILAL S S, TILLACK M S, OSHAY B. Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 69:02613-02613-11.
|
[57] |
HAO Z, GUO L B, LI C. Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement[J]. J. Analytical Atomic Spectrometry, 2014, 29(12):2309-2314. doi: 10.1039/C4JA00144C
|
[58] |
ARSHAD A, BASHIR S, HAYAT A. Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma[J]. Applied Physics B, 2016, 63(3):1-10. http://adsabs.harvard.edu/abs/2016ApPhB.122...63A
|
[59] |
LKEDA Y, KANEKO M. Microwave-enhanced laser-induced breakdown spectroscopy[C]. Laser Techniques to Fluid Mechanics, Lisbon, Lisbon, Portuga, 2008:1-9.
|
[60] |
LIU Y, MATTHICU B, MARTIN R. Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy:Evaluation on ceramics[J]. J. Analytical Atomic Spectrometry, 2010, 25(8):1316-1323. doi: 10.1039/c003304a
|
[61] |
LIU Y, BOUSQUET B, BAUDELET M. Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2012, 73(73):89-92.
|
[62] |
KHUMAENI A, MOTONOBU T, KATSUAKI A. Enhancement of LIBS emission using antenna-coupled microwave[J]. Optics Express, 2013, 21(24):29755-68. doi: 10.1364/OE.21.029755
|
[63] |
TAMOP M, MIYABE M, AKAOKA K. Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling[J]. J. Analytical Atomic Spectrometry, 2014, 29(5):886-892. doi: 10.1039/C3JA50259G
|
[64] |
WALL M, SUN A, ALWAHABI Z T. Quantitative detection of metallic traces in water-based liquids by microwave-assisted laser-induced breakdown spectroscopy[J]. Optics Express, 2016, 24(2):1507-1517. doi: 10.1364/OE.24.001507
|
[65] |
VILJANEN J, SUN Z, ALWAHABI Z T. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2016, 118:29-36. doi: 10.1016/j.sab.2016.02.002
|