Citation: | LI Xin-yuan, JI Mu-wei, WANG Hong-zhi, TU Guo-peng, WAN Xiao-dong, LIU Jia-jia, LIU Jia, XU Meng, ZHANG Jia-tao. Research progress of near-infrared photothermal conversion nanocrystals[J]. Chinese Optics, 2017, 10(5): 541-554. doi: 10.3788/CO.20171005.0541 |
[1] |
CHEN X, CHEN Y, YAN M, et al.. Nanosecond photothermal effects in plasmonic nanostructures[J]. ACS Nano, 2012, 6(3):2550-2557. doi: 10.1021/nn2050032
|
[2] |
CHENG L, WANG C, FENG L, et al.. Functional nanomaterials for phototherapies of cancer[J]. Chemical Reviews, 2014, 114(21):10869-10939. doi: 10.1021/cr400532z
|
[3] |
JAQUE D, MARTINEZ MAESTRO L, DEL ROSAL B, et al.. Nanoparticles for photothermal therapies[J]. Nanoscale, 2014, 6(16):9494-9530. doi: 10.1039/C4NR00708E
|
[4] |
ZHU G, XU J, ZHAO W, et al.. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces, 2016, 8(46):31716-31721. http://www.ncbi.nlm.nih.gov/pubmed/27801572
|
[5] |
WANG X, OU G, WANG N, et al.. Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination[J]. ACS Applied Materials & Interfaces, 2016, 8(14):9194-9199. http://www.ncbi.nlm.nih.gov/pubmed/27019007
|
[6] |
CUI J, XU S, GUO C, et al.. Highly efficient photothermal semiconductor nanocomposites for photothermal imaging of latent fingerprints[J]. Analytical Chemistry, 2015, 87(22):11592-11598. doi: 10.1021/acs.analchem.5b03652
|
[7] |
CHEN G, ROY I, YANG C, et al.. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy[J]. Chemical Reviews, 2016, 116(5):2826-2885. doi: 10.1021/acs.chemrev.5b00148
|
[8] |
CHENG L, YANG K, LI Y, et al.. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy[J]. Angewandte Chemie International Edition, 2011, 50(32):7385-7390. doi: 10.1002/anie.v50.32
|
[9] |
ZHOU M, ZHANG R, HUANG M, et al.. A chelator-free multifunctional[64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy[J]. J. American Chemical Society, 2010, 132(43):15351-15358. doi: 10.1021/ja106855m
|
[10] |
HUANG X, NERETINA S, EL-SAYED M A. Gold nanorods:from synthesis and properties to biological and biomedical applications[J]. Advanced Materials, 2009, 21(48):4880-4910. doi: 10.1002/adma.200802789
|
[11] |
MOU J, CHEN Y, MA M, et al.. Facile synthesis of liposome/Cu2-xS-based nanocomposite for multimodal imaging and photothermal therapy[J]. Science China Materials, 2015, 58(4):294-301. doi: 10.1007/s40843-015-0044-3
|
[12] |
王英帅, 周颖, 王珺楠, 等.金纳米棒核/二氧化硅壳纳米复合结构的可控制备及细胞成像[J].中国光学, 2013, 6(5):743-749. http://www.chineseoptics.net.cn/CN/abstract/abstract9059.shtml
WANG Y SH, ZHOU Y, WANG J, et al.. Controlled synthesis and cell imaging of gold nanorod-silica core-shell nanoparticles[J]. Chinese Optics, 2013, 6(5):743-749.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9059.shtml
|
[13] |
CHAI Z, HU X, LU W. Cell membrane-coated nanoparticles for tumor-targeted drug delivery[J]. Science China Materials, 2017:1-7. doi: 10.1007/s40843-016-5163-4
|
[14] |
PITSILLIDES C M, JOE E K, WEI X, et al.. Selective cell targeting with light-absorbing microparticles and nanoparticles[J]. Biophysical Journal, 2003, 84(6):4023-4032. doi: 10.1016/S0006-3495(03)75128-5
|
[15] |
LOO C, LOWERY A, HALAS N, et al.. Immunotargeted nanoshells for integrated cancer imaging and therapy[J]. Nano Letters, 2005, 5(4):709-711. doi: 10.1021/nl050127s
|
[16] |
SKRABALAK S E, CHEN J, SUN Y, et al.. Gold nanocages:synthesis, properties, and applications[J]. Accounts of Chemical Research, 2008, 41(12):1587-1595. doi: 10.1021/ar800018v
|
[17] |
EL-SAYED I H, HUANG X, EL-SAYED M A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles[J]. Cancer Letters, 2006, 239(1):129-135. doi: 10.1016/j.canlet.2005.07.035
|
[18] |
NAM J, WON N, JIN H, et al.. pH-induced aggregation of gold nanoparticles for photothermal cancer therapy[J]. J. American Chemical Society, 2009, 131(38):13639-13645. doi: 10.1021/ja902062j
|
[19] |
GOBIN A M, LEE M H, HALAS N J, et al.. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy[J]. Nano Letters, 2007, 7(7):1929-1934. doi: 10.1021/nl070610y
|
[20] |
HUANG W, QIAN W, EL-SAYED M A. Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface plasmon resonance[J]. J. American Chemical Society, 2006, 128(41):13330-13331. doi: 10.1021/ja064328p
|
[21] |
VON MALTZAHN G, PARK J-H, AGRAWAL A, et al.. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas[J]. Cancer Research, 2009, 69(9):3892-3900. doi: 10.1158/0008-5472.CAN-08-4242
|
[22] |
CHEN H, SHAO L, MING T, et al.. understanding the photothermal conversion efficiency of gold nanocrystals[J]. Small, 2010, 6(20):2272-2280. doi: 10.1002/smll.v6:20
|
[23] |
LU W, SINGH A K, KHAN S A, et al.. Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced raman spectroscopy[J]. J. American Chemical Society, 2010, 132(51):18103-18114. doi: 10.1021/ja104924b
|
[24] |
YUAN H, FALES A M, VO-DINH T. TAT peptide-functionalized gold nanostars:enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance[J]. J. American Chemical Society, 2012, 134(28):11358-11361. doi: 10.1021/ja304180y
|
[25] |
PELAZ B, GRAZU V, IBARRA A, et al.. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications[J]. Langmuir, 2012, 28(24):8965-8970. doi: 10.1021/la204712u
|
[26] |
JANA N R, GEARHEART L, MURPHY C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Advanced Materials, 2001, 13(18):1389-1393. doi: 10.1002/(ISSN)1521-4095
|
[27] |
NIKOOBAKHT B, EL-SAYED M A. Preparation and growth mechanism of gold nanorods(NRs) using seed-mediated growth method[J]. Chemistry of Materials, 2003, 15(10):1957-1962. doi: 10.1021/cm020732l
|
[28] |
TIAN Q, JIANG F, ZOU R, et al.. Hydrophilic Cu9S5 nanocrystals:a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo[J]. ACS Nano, 2011, 5(12):9761-9771. doi: 10.1021/nn203293t
|
[29] |
TIAN Q, TANG M, SUN Y, et al.. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells[J]. Advanced Materials, 2011, 23(31):3542-3547. doi: 10.1002/adma.201101295
|
[30] |
WANG S, RIEDINGER A, LI H, et al.. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects[J]. ACS Nano, 2015, 9(2):1788-1800. doi: 10.1021/nn506687t
|
[31] |
KRIEGEL I, RODR GUEZ-FERN NDEZ J, WISNET A, et al.. Shedding light on vacancy-doped copper chalcogenides:shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances[J]. ACS Nano, 2013, 7(5):4367-4377. doi: 10.1021/nn400894d
|
[32] |
HUANG S, LIU J, HE Q, et al. Smart Cu1.75S nanocapsules with high and stable photothermal efficiency for nir photo-triggered drug release[J]. Nano Research, 2015, 8(12):4038-4047. doi: 10.1007/s12274-015-0905-9
|
[33] |
DING X, LIOW C H, ZHANG M, et al.. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window[J]. Journal of the American Chemical Society, 2014, 136(44):15684-15693. doi: 10.1021/ja508641z
|
[34] |
JI M, XU M, ZHANG W, et al.. Structurally well-defined Au@Cu2-xS core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency[J]. Advanced Materials, 2016, 28(16):3094-3101. doi: 10.1002/adma.201503201
|
[35] |
YU X, BI J, YANG G, et al.. Synergistic effect induced high photothermal performance of Au nanorod@Cu7S4 Yolk-Shell nanooctahedron particles[J]. The Journal of Physical Chemistry C, 2016, 120(43):24533-24541. doi: 10.1021/acs.jpcc.6b06213
|
[36] |
JI M, LI X, WANG H, et al.. Versatile synthesis of yolk/shell hybrid nanocrystals via more kinds of ions exchange reactions:towards novel metal/semiconductor and semiconductor/semiconductor conformations[J]. Nano Research, 2017, DOI: 10.1007/s12274-017-1508-4.
|
[37] |
KAM N W S, O'CONNELL M, WISDOM J A, et al.. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction[J]. Proceedings of the National Academy of Sciences, 2005, 102(33):11600-11605. doi: 10.1073/pnas.0502680102
|
[38] |
MOON H K, LEE S H, CHOI H C, et al.. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes[J]. ACS Nano, 2009, 3(11):3707-3713. doi: 10.1021/nn900904h
|
[39] |
BURKE A, DING X, SINGH R, et al.. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation[J]. Proceedings of the National Academy of Sciences, 2009, 106(31):12897-12902. doi: 10.1073/pnas.0905195106
|
[40] |
GHOSH S, DUTTA S, GOMES E, et al.. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes[J]. ACS Nano, 2009, 3(9):2667-2673. doi: 10.1021/nn900368b
|
[41] |
LIU X, TAO H, YANG K, et al.. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors[J]. Biomaterials, 2011, 32(1):144-151. doi: 10.1016/j.biomaterials.2010.08.096
|
[42] |
YANG K, ZHANG S, ZHANG G, et al.. Graphene in mice:ultrahigh in vivo tumor uptake and efficient photothermal therapy[J]. Nano Letters, 2010, 10(9):3318-3323. doi: 10.1021/nl100996u
|
[43] |
YANG K, WAN J, ZHANG S, et al.. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power[J]. Biomaterials, 2012, 33(7):2206-2214. doi: 10.1016/j.biomaterials.2011.11.064
|
[44] |
KIM J.-W, GALANZHA E I, SHASHKOV E V, et al.. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents[J]. Nat Nano, 2009, 4(10):688-694. doi: 10.1038/nnano.2009.231
|
[45] |
WANG C, LI J, AMATORE C, et al.. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells[J]. Angewandte Chemie International Edition, 2011, 50(49):11644-11648. doi: 10.1002/anie.201105573
|
[46] |
MA X, TAO H, YANG K, et al.. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging[J]. Nano Research, 2012, 5(3):199-212. doi: 10.1007/s12274-012-0200-y
|
[47] |
CHEN W, ZHANG X, AI F, et al.. Graphitic carbon nanocubes derived from ZIF-8 for photothermal therapy[J]. Inorganic Chemistry, 2016, 55(12):5750-5752. doi: 10.1021/acs.inorgchem.6b01013
|
[48] |
SONG X, CHEN Q, LIU Z, et al.. Recent advances in the development of organic photothermal nano-agents[J]. Nano Research, 2015, 8(2):340-354. doi: 10.1007/s12274-014-0620-y
|
[49] |
苏彦勋, 柯沅锋, 蔡士良, 等.层层自组装金纳米粒子表面等离子体引发光电流应用于等离子体增感太阳能电池[J].中国光学, 2014, 7(2):267-273. http://www.chineseoptics.net.cn/CN/abstract/abstract9127.shtml
SU Y X, KE Y F, CAI SH L, et al.. Layer self-assembly of gold nanoparticles surface plasmon triggered photoelectric current applied plasmon sensitized solar cell[J]. Chinese Optics, 2014, 7(2):267-273.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9127.shtml
|
[50] |
秦沛, 任玉, 刘丽炜, 等.金属纳米颗粒等离激元共振增强非线性介质谐波的发展现状[J].中国光学, 2016, 9(2):213-225. http://www.chineseoptics.net.cn/CN/abstract/abstract9415.shtml
QIN P, REN Y, LIU L W, et al.. Development of plasmon-resonance of metal nanoparticles enhanced harmonic generation in nonlinear medium[J]. Chinese Optics, 2016, 9(2):213-225.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9415.shtml
|
[51] |
ROPER D K, AHN W, HOEPFNER M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(9):3636-3641. doi: 10.1021/jp064341w
|
[52] |
CHEN T, XU M, JI M, et al.. Aqueous phase synthesis of Au@Ag3AuX2(X=Se, Te) core/shell nanocrystals and their broad NIR photothermal conversion application[J]. Cryst. Eng. Comm., 2016, 18(29):5418-5422. doi: 10.1039/C6CE00609D
|
[53] |
KIM J, PARK J, KIM H, et al.. Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA[J]. Biomaterials, 2013, 34(29):7168-7180. doi: 10.1016/j.biomaterials.2013.05.072
|
[54] |
JIANG R, LI B, FANG C, et al.. Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications[J]. Advanced Materials, 2014, 26(31):5274-5309. doi: 10.1002/adma.201400203
|
[55] |
COZZOLI P D, PELLEGRINO T, MANNA L. Synthesis, properties and perspectives of hybrid nanocrystal structures[J]. Chemical Society Reviews, 2006, 35(11):1195-1208. doi: 10.1039/b517790c
|
[56] |
JANSSENS S, WILLIAMS G V M, CLARKE D. Systematic study of sensitized LaF3:Eu3+ nanoparticles[J]. J. Applied Physics, 2011, 109(2):023506. doi: 10.1063/1.3531994
|
[57] |
ZHANG Q, LEE I, JOO J B, et al.. Core-Shell nanostructured catalysts[J]. Accounts of Chemical Research, 2013, 46(8):1816-1824. doi: 10.1021/ar300230s
|
[58] |
HU Y, LIU Y, LI Z, et al.. Highly asymmetric, interfaced dimers made of Au nanoparticles and bimetallic nanoshells:synthesis and photo-enhanced catalysis[J]. Advanced Functional Materials, 2014, 24(19):2828-2836. doi: 10.1002/adfm.v24.19
|
[59] |
SHEEHAN S W, NOH H, BRUDVIG G W, et al.. Plasmonic enhancement of dye-sensitized solar cells using Core-Shell-Shell nanostructures[J]. The Journal of Physical Chemistry C, 2013, 117(2):927-934. doi: 10.1021/jp311881k
|
[60] |
HALAS N J, LAL S, CHANG W S, et al.. Plasmons in strongly coupled metallic nanostructures[J]. Chemical Reviews, 2011, 111(6):3913-3961. doi: 10.1021/cr200061k
|
[61] |
GUI J, JI M, LIU J, et al.. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures:old concept, new applications[J]. Angewandte Chemie International Edition, 2015, 54(12):3683-3687. doi: 10.1002/anie.201410053
|
[62] |
ZHANG J, TANG Y, LEE K, et al.. Nonepitaxial growth of hybrid Core-Shell nanostructures with large lattice mismatches[J]. Science, 2010, 327(5973):1634-1638. doi: 10.1126/science.1184769
|
[63] |
YU Z, XIONG S, JIANG J, et al.. Phase-controlled synthesis of Cu2ZnSnS4 nanocrystals:the role of reactivity between Zn and S[J]. J. American Chemical Society, 2013, 135(49):18377-18384. doi: 10.1021/ja405962k
|
[64] |
WANG X, FENG J, BAI C, et al.. Synthesis, properties, and applications of hollow micro-/nanostructures[J]. Chemical Review, 2016, 116:10983-11060. doi: 10.1021/acs.chemrev.5b00731
|
[65] |
KONG L, CHEN W, MA D Y, et al.. Size control of Au@Cu2O octahedra for excellent photocatalytic performance[J]. J. Materials Chemistry, 2012, 22(2):719-724. doi: 10.1039/C1JM13672K
|
[66] |
KUO C H, CHU Y T, SONG Y F, et al.. Cu2O nanocrystal-templated growth of Cu2S nanocages with encapsulated Au nanoparticles and in-situ transmission X-ray microscopy study[J]. Advanced Functional Materials, 2011, 21(4):792-797. doi: 10.1002/adfm.201002108
|
[67] |
HU H, LIU J, YU J, et al.. Synthesis of Janus Au@periodic mesoporous organosilica(PMO) nanostructures with precisely controllable morphology:a seed-shape defined growth mechanism[J]. Nanoscale, 2017, 9:4826-4834. doi: 10.1039/C7NR01047H
|