Citation: | LI Tian-you, HUANG Ling-ling, WANG Yong-tian. The principle and research progress of metasurfaces[J]. Chinese Optics, 2017, 10(5): 523-540. doi: 10.3788/CO.20171005.0523 |
[1] |
YU N, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2):139-150. doi: 10.1038/nmat3839
|
[2] |
CHEN H, TAYLOR A J, YU N. A review of metasurfaces:physics and applications[J]. ArXiv:1605.07672, 2016.
|
[3] |
SMITH D R, PENDRY J B, WILTSHIRE M. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792. doi: 10.1126/science.1096796
|
[4] |
PENDRY J B, HOLDEN A J, STEWART W J, et al.. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25):4773-4776. doi: 10.1103/PhysRevLett.76.4773
|
[5] |
PENDRY J B, HOLDEN A J, ROBBINS D J, et al.. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11):2075-2084. doi: 10.1109/22.798002
|
[6] |
SMITH D R, PADILLA W J, VIER D C, et al.. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18):4184-4187. doi: 10.1103/PhysRevLett.84.4184
|
[7] |
SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79. doi: 10.1126/science.1058847
|
[8] |
ZHANG S, FAN W J, PANOIU N C, et al.. Experimental demonstration of near-infrared negative-index metamaterials[J]. Physical Review Letters, 2005, 95(13):137404. doi: 10.1103/PhysRevLett.95.137404
|
[9] |
VALENTINE J, ZHANG S, ZENTGRAF T, et al.. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 2008, 455(7211):376-379. doi: 10.1038/nature07247
|
[10] |
XIAO S, CHETTIAR U K, KILDISHEV A V, et al.. Yellow-light negative-index metamaterials[J]. Optics Letters, 2009, 34(22):3478-3480. doi: 10.1364/OL.34.003478
|
[11] |
SMITH D R, SCHULTZ S, MARKOS P, et al.. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 2002, 65(19):195104. doi: 10.1103/PhysRevB.65.195104
|
[12] |
SMITH D R, VIER D C, KOSCHNY T, et al.. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 71(3):142-154. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=15903615
|
[13] |
PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966-3969. doi: 10.1103/PhysRevLett.85.3966
|
[14] |
FANG N, LEE H, SUN C, et al.. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721):534-537. doi: 10.1126/science.1108759
|
[15] |
PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782. doi: 10.1126/science.1125907
|
[16] |
LEONHARDT U. Optical conformal mapping[J]. Science, 2006, 312(5781):1777-1780. doi: 10.1126/science.1126493
|
[17] |
HOLLOWAY C L, KUESTER E F, GORDON J A, et al.. An overview of the theory and applications of metasurfaces:the two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2):10-35. doi: 10.1109/MAP.2012.6230714
|
[18] |
KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125):1232009. doi: 10.1126/science.1232009
|
[19] |
YU N, GENEVET P, KATS M A, et al.. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337. doi: 10.1126/science.1210713
|
[20] |
YU N, AIETA F, GENEVET P, et al.. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12):6328-6333. doi: 10.1021/nl303445u
|
[21] |
HUANG L, CHEN X, MVHLENBERND H, et al.. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4:2808. http://europepmc.org/abstract/PMC/PMC3868226
|
[22] |
黄玲玲. 基于手性光场作用的超颖表面的相位调控特性及其应用[D]. 北京: 清华大学, 2014. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyj201606001&dbname=CJFD&dbcode=CJFQ
HUANG L L. The phase modulation property of metasurfaces based on chiral field interaction and its applications[D]. Beijing:Tsinghua University, 2014.(inChinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyj201606001&dbname=CJFD&dbcode=CJFQ
|
[23] |
BHARADWAJ P, DEUTSCH B, NOVOTNY L. Optical antennas[J]. Advances in Optics and Photonics, 2009, 1(3):438-483. doi: 10.1364/AOP.1.000438
|
[24] |
NOVOTNY L, VAN HULST N. Antennas for light[J]. Nature Photonics, 2011, 5(2):83-90. doi: 10.1038/nphoton.2010.237
|
[25] |
KATS M A, GENEVET P, AOUST G, et al.. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy[J]. Proceedings of the National Academy of Sciences, 2012, 109(31):12364-12368. doi: 10.1073/pnas.1210686109
|
[26] |
PFEIFFER C, GRBIC A. Metamaterial Huygens' surfaces:tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19):197401. doi: 10.1103/PhysRevLett.110.197401
|
[27] |
PFEIFFER C, EMANI N K, SHALTOUT A M, et al.. Efficient light bending with isotropic metamaterial Huygens' surfaces[J]. Nano Letters, 2014, 14(5):2491-2497. doi: 10.1021/nl5001746
|
[28] |
KIM M, WONG A M H, ELEFTHERIADES G V. Optical Huygens metasurfaces with independent control of the magnitude and phase of the local reflection coefficients[J]. Physical Review X, 2014, 4(4):041042. doi: 10.1103/PhysRevX.4.041042
|
[29] |
WANG Z, SHI J, CHEN J. High-efficiency electromagnetic wave controlling with all-dielectric Huygens'metasurfaces[J]. International J. Antennas and Propagation, 2015:1-7. http://connection.ebscohost.com/c/articles/109272942/high-efficiency-electromagnetic-wave-controlling-all-dielectric-huygens-metasurfaces
|
[30] |
DECKER M, STAUDE I, FALKNER M, et al.. High-efficiency dielectric Huygens' surfaces[J]. Advanced Optical Materials, 2015, 3(6):813-820. doi: 10.1002/adom.v3.6
|
[31] |
ZHAO W, JIANG H, LIU B, et al.. Dielectric Huygens'metasurface for high-efficiency hologram operating in transmission mode[J]. Scientific Reports, 2016, 6:30613. doi: 10.1038/srep30613
|
[32] |
Generalized Theory of Interference and its Applications.Part 2:Partially Coherent Pencils[J]. Proceedings of Indian Academy of Sciences, 1956, section A, 4(6):398-417.
|
[33] |
BERRY M V. Quantal phase-factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1984, 392(1802):45-57. doi: 10.1098/rspa.1984.0023
|
[34] |
MENZEL C, ROCKSTUHL C, LEDERER F. An advanced jones calculus for the classification of periodic metamaterials[J]. Phys. Rev. A, 2010, 82(5):53811. doi: 10.1103/PhysRevA.82.053811
|
[35] |
ARMITAGE N P. Constraints on jones transmission matrices from time-reversal invariance and discrete spatial symmetries[J]. Physical Review B, 2014, 90(3):35135. doi: 10.1103/PhysRevB.90.035135
|
[36] |
KANG M, FENG T, WANG H T, et al.. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 2012, 20(14):15882-15890. doi: 10.1364/OE.20.015882
|
[37] |
HUANG L, CHEN X, M HLENBERND H, et al.. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11):5750-5755. doi: 10.1021/nl303031j
|
[38] |
WANG B, DONG F, LI Q, et al.. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8):5235-5240. doi: 10.1021/acs.nanolett.6b02326
|
[39] |
FALCONE F, LOPETEGI T, LASO M, et al.. Babinet principle applied to the design of metasurfaces and metamaterials[J]. Physical Review Letters, 2004, 93(19):197401. doi: 10.1103/PhysRevLett.93.197401
|
[40] |
ZENTGRAF T, MEYRATH T P, SEIDEL A, et al.. Babinet'S principle for optical frequency metamaterials and nanoantennas[J]. Physical Review B, 2007, 76(3):033407. http://adsabs.harvard.edu/abs/2007PhRvB..76c3407Z
|
[41] |
CHEN H T, O'HARA J F, TAYLOR A J, et al.. Complementary planar terahertz metamaterials[J]. Opt Express, 2007, 15(3):1084-1095. doi: 10.1364/OE.15.001084
|
[42] |
POZAR D M, TARGONSKI S D, SYRIGOS H D. Design of millimeter wave microstrip reflectarrays[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(2):287-296. doi: 10.1109/8.560348
|
[43] |
马科斯玻恩, 埃米尔沃尔夫.光学原理——光的传播、干涉和衍射的电磁理论(第七版)[M].北京:电子工业出版社, 2009.
BORN M, WOLF E. Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. Beijing:Electronic Industry Press, 2009.(in Chinese)
|
[44] |
EVLYUKHIN A B, REINHARDT C, CHICHKOV B N. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation[J]. Physical Review B, 2011, 84(23):235429. doi: 10.1103/PhysRevB.84.235429
|
[45] |
EVLYUKHIN A B, REINHARDT C, SEIDEL A, et al.. Optical response features of Si-nanoparticle arrays[J]. Physical Review B, 2010, 82(4):045404. doi: 10.1103/PhysRevB.82.045404
|
[46] |
ZHAO Q, KANG L, DU B, et al.. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite[J]. Physical Review Letters, 2008, 101(2):027402. doi: 10.1103/PhysRevLett.101.027402
|
[47] |
VYNCK K, FELBACQ D, CENTENO E, et al.. All-dielectric rod-type metamaterials at optical frequencies[J]. Physical Review Letters, 2009, 102(13):133901. doi: 10.1103/PhysRevLett.102.133901
|
[48] |
ZHAO Q, ZHOU J, ZHANG F, et al.. Mie resonance-based dielectric metamaterials[J]. Materials Today, 2009, 12(12):60-69. doi: 10.1016/S1369-7021(09)70318-9
|
[49] |
PENG L, RAN L, CHEN H, et al.. Experimental observation of left-handed behavior in an array of standard dielectric resonators[J]. Physical Review Letters, 2007, 98(15):157403. doi: 10.1103/PhysRevLett.98.157403
|
[50] |
GINN J C, BRENER I, PETERS D W, et al.. Realizing optical magnetism from dielectric metamaterials[J]. Physical Review Letters, 2012, 108(9):097402. doi: 10.1103/PhysRevLett.108.097402
|
[51] |
CHENG J, ANSARI-OGHOL-BEIG D, MOSALLAEI H. Wave manipulation with designer dielectric metasurfaces[J]. Optics Letters, 2014, 39(21):6285-6288. doi: 10.1364/OL.39.006285
|
[52] |
CHONG K E, STAUDE I, JAMES A, et al.. Polarization-independent silicon metadevices for efficient optical wavefront control[J]. Nano Letters, 2015, 15(8):5369-5374. doi: 10.1021/acs.nanolett.5b01752
|
[53] |
YANG Y, WANG W, MOITRA P, et al.. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3):1394-1399. doi: 10.1021/nl4044482
|
[54] |
ARBABI A, HORIE Y, BALL A J, et al.. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6:7069. doi: 10.1038/ncomms8069
|
[55] |
ARBABI A, HORIE Y, BAGHERI M, et al.. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11):937-943. doi: 10.1038/nnano.2015.186
|
[56] |
LIN D, FAN P, HASMAN E, et al.. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194):298-302. doi: 10.1126/science.1253213
|
[57] |
AIETA F, GENEVET P, YU N, et al.. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters, 2012, 12(3):1702-1706. doi: 10.1021/nl300204s
|
[58] |
ZHANG X, TIAN Z, YUE W, et al.. Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33):4567-4572. doi: 10.1002/adma.201204850
|
[59] |
SUN S, HE Q, XIAO S, et al.. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5):426-431. doi: 10.1038/nmat3292
|
[60] |
SUN S, YANG K, WANG C, et al.. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12):6223-6229. doi: 10.1021/nl3032668
|
[61] |
金国藩, 严瑛白, 邬敏贤.二元光学[M].北京:国防工业出版社, 1998.
JIN G F, YAN Y B, WU M X. Binary Optics[M]. Beijing:National Defense Industry Press, 1998.(inChinese)
|
[62] |
MARCHAND E W. Gradient Index Optics[M]. New York:New York Academic Press, 1978.
|
[63] |
AIETA F, GENEVET P, KATS M A, et al.. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9):4932-4936. doi: 10.1021/nl302516v
|
[64] |
LI X, XIAO S, CAI B, et al.. Flat metasurfaces to focus electromagnetic waves in reflection geometry[J]. Optics Letters, 2012, 37(23):4940-4942. doi: 10.1364/OL.37.004940
|
[65] |
NI X, ISHⅡ S, KILDISHEV A V, et al.. Ultra-thin, planar, babinet-inverted plasmonic metalenses[J]. Light:Science & Applications, 2013, 2(4):e72. http://www.nature.com/lsa/journal/v2/n4/abs/lsa201328a.html
|
[66] |
KUZNETSOV S A, ASTAFEV M A, BERUETE M, et al.. Planar holographic metasurfaces for terahertz focusing[J]. Scientific Reports, 2015, 5:7738. doi: 10.1038/srep07738
|
[67] |
CHEN X, HUANG L, M HLENBERND H, et al.. Dual-polarity plasmonicmetalens for visible light[J]. Nature Communications, 2012, 3:1198. doi: 10.1038/ncomms2207
|
[68] |
PORS A, NIELSEN M G, ERIKSEN R L, et al.. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2):829-834. doi: 10.1021/nl304761m
|
[69] |
KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al.. Metalenses at visible wavelengths:diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194. doi: 10.1126/science.aaf6644
|
[70] |
KHORASANINEJAD M, AIETA F, KANHAIYA P, et al.. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano Letters, 2015, 15(8):5358-5362. doi: 10.1021/acs.nanolett.5b01727
|
[71] |
谢敬辉, 廖宁放, 曹良才.傅里叶光学与现代光学基础[M].北京:北京理工大学出版社, 2007.
XIE J H, LIAO N F, CAO L C. Fundamentals of Fourier Optics and Contemporary Optics[M]. Beijing:Beijing Institute of Technology Press, 2007.(inChinese)
|
[72] |
SLINGER C, CAMERON C, STANLEY M. Computer-generated holography as a generic display technology[J]. Computer, 2005, 38(8):46-53. doi: 10.1109/MC.2005.260
|
[73] |
KELLY D P, MONAGHAN D S, PANDEY N, et al.. Digital holographic capture and optoelectronic reconstruction for 3D displays[J]. International J. Digital Multimedia Broadcasting, 2010, 2010:1-14. http://www.oalib.com/paper/55386
|
[74] |
GENG J. Three-dimensional display technologies[J]. Advances in Optics and Photonics, 2013, 5(4):456-535. doi: 10.1364/AOP.5.000456
|
[75] |
WALTHER B, HELGERT C, ROCKSTUHL C, et al.. Spatial and spectral light shaping with metamaterials[J]. Advanced Materials, 2012, 24(47):6300-6304. doi: 10.1002/adma.201202540
|
[76] |
NI X, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]., 2013, 4:2807.
|
[77] |
ZHENG G, M HLENBERND H, KENNEY M, et al.. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4):308-312. doi: 10.1038/nnano.2015.2
|
[78] |
NI X, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4:2807. http://www.nature.com/ncomms/2013/131115/ncomms3807/full/ncomms3807.html?WT.ec_id=NCOMMS-20131120
|
[79] |
HUANG L, M HLENBERND H, LI X, et al.. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41):6444-6449. doi: 10.1002/adma.201502541
|
[80] |
HUANG Y, CHEN W T, TSAI W, et al.. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5):3122-3127. doi: 10.1021/acs.nanolett.5b00184
|
[81] |
KNIGHT M W, KING N S, LIU L, et al.. Aluminum for plasmonics[J]. ACS Nano, 2014, 8(1):834-840. doi: 10.1021/nn405495q
|
[82] |
KNIGHT M W, LIU L, WANG Y, et al.. Aluminum plasmonic nanoantennas[J]. Nano Letters, 2012, 12(11):6000-6004. doi: 10.1021/nl303517v
|
[83] |
PADGETT M, COURTIAL J, ALLEN L. Light's orbital angular momentum[J]. Physics Today, 2004, 57(5):35-40. doi: 10.1063/1.1768672
|
[84] |
ALLEN L, BEIJERSBERGEN M W, SPREEUWR, et al.. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11):8185-8189. doi: 10.1103/PhysRevA.45.8185
|
[85] |
MOLINA-TERRIZA G, TORRES J P, TORNER L. Twisted photons[J]. Nature Physics, 2007, 3(5):305-310. doi: 10.1038/nphys607
|
[86] |
VERBEECK J, TIAN H, SCHATTSCHNEIDER P. Production and application of electron vortex beams[J]. Nature, 2010, 467(7313):301-304. doi: 10.1038/nature09366
|
[87] |
ZENG J, LI L, YANG X, et al.. Generating and separating twisted light by gradient rotation split-ring antenna metasurfaces[J]. Nano Letters, 2016, 16(5):3101-3108. doi: 10.1021/acs.nanolett.6b00360
|
[88] |
LI S, WANG J. Simultaneous demultiplexing and steering of multiple orbital angular momentum modes[J]. Scientific Reports, 2015, 5:15406. doi: 10.1038/srep15406
|
[89] |
REN H, LI X, ZHANG Q, et al.. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287):805-809. doi: 10.1126/science.aaf1112
|
[90] |
MEHMOOD M Q, MEI S, HUSSAIN S, et al.. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 2016, 28(13):2533-2539. doi: 10.1002/adma.201504532
|
[91] |
MAGUID E, YULEVICH I, VEKSLER D, et al.. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290):1202-1206. doi: 10.1126/science.aaf3417
|
[92] |
ZHANG N, YUAN X C, BURGE R E. Extending the detection range of optical vortices by dammann vortex gratings[J]. Opt. Lett., 2010, 35(20):3495-3497. doi: 10.1364/OL.35.003495
|
[93] |
LEI T, ZHANG M, LI Y, et al.. Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings[J]. Light:Science & Applications, 2015, 4(3):e257. http://www.nature.com/articles/lsa201530
|
[94] |
YU J, ZHOU C, JIA W, et al.. Generation of dipole vortex array using spiral dammann zone plates[J]. Appl. Opt., 2012, 51(28):6799-6804. doi: 10.1364/AO.51.006799
|
[95] |
YU J, ZHOU C, JIA W, et al.. Three-dimensional dammann array[J]. Appl. Opt., 2012, 51(10):1619-1630. doi: 10.1364/AO.51.001619
|
[96] |
YU J, ZHOU C, JIA W, et al.. Three-dimensional dammann vortex array with tunable topological charge[J]. Appl. Opt., 2012, 51(13):2485-2490. doi: 10.1364/AO.51.002485
|
[97] |
WANG D, GU Y, GONG Y, et al.. An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface[J]. Optics Express, 2015, 23(9):11114-11122. doi: 10.1364/OE.23.011114
|
[98] |
CONG L, XU N, GU J, et al.. Highly flexible broadband terahertz metamaterial quarter-wave plate[J]. Laser & Photonics Reviews, 2014, 8(4):626-632. http://www.ingentaconnect.com/content/bpl/lpor/2014/00000008/00000004/art00022
|
[99] |
LI Y, ZHANG J, QU S, et al.. Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces[J]. J. Applied Physic, 2015, 117(4):44501. doi: 10.1063/1.4906220
|
[100] |
SUN W, HE Q, HAO J, et al.. A transparent metamaterial to manipulate electromagnetic wave polarizations[J]. Optics Letters, 2011, 36(6):927-929. doi: 10.1364/OL.36.000927
|
[101] |
PFEIFFER C, GRBIC A. Bianisotropic metasurfaces for optimal polarization control:analysis and synthesis[J]. Physical Review Applied, 2014, 2(4):044011. doi: 10.1103/PhysRevApplied.2.044011
|
[102] |
PFEIFFER C, ZHANG C, RAY V, et al.. High performance bianisotropicmetasurfaces:asymmetric transmission of light[J]. Physical Review Letters, 2014, 113(2):023902. doi: 10.1103/PhysRevLett.113.023902
|
[103] |
GRADY N K, HEYES J E, CHOWDHURY D R, et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138):1304-1307. doi: 10.1126/science.1235399
|
[104] |
CHEN H, WANG J, MA H, et al.. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances[J]. J. Applied Physics, 2014, 115(15):154504. doi: 10.1063/1.4869917
|
[105] |
DAI Y, REN W, CAI H, et al.. Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure[J]. Optics Express, 2014, 22(7):7465-7472. doi: 10.1364/OE.22.007465
|
[106] |
MINOVICH A E, MIROSHNICHENKO A E, BYKOV A Y, et al.. Functional and nonlinear optical metasurfaces[J]. Laser & Photonics Reviews, 2015, 9(2):195-213. doi: 10.1002/lpor.201400402/full
|
[107] |
CUI Y, HE Y, JIN Y, et al.. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews, 2014, 8(4):495-520. doi: 10.1002/lpor.201400026/pdf
|
[108] |
GENEVET P, CAPASSO F. Holographic optical metasurfaces:a review of current progress[J]. Reports on Progress in Physics, 2015, 78(2):24401. doi: 10.1088/0034-4885/78/2/024401
|
[109] |
GU J, SINGH R, LIU X, et al.. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 2012, 3:1151. doi: 10.1038/ncomms2153
|
[110] |
WATTS C M, SHREKENHAMER D, MONTOYA J, et al.. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8(8):605-609. doi: 10.1038/nphoton.2014.139
|
[111] |
HUIDOBRO P A, KRAFT M, MAIER S A, et al.. Graphene as a tunable anisotropic or isotropic plasmonic metasurface[J]. ACS Nano, 2016, 10(5):5499-5506. doi: 10.1021/acsnano.6b01944
|
[112] |
DABIDIAN N, DUTTA-GUPTA S, KHOLMANOV I, et al.. Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces[J]. Nano Letters, 2016, 16(6):3607-3615. doi: 10.1021/acs.nanolett.6b00732
|
[113] |
LI Z, YU N. Modulation of mid-infrared light using graphene-metal plasmonic antennas[J]. Applied Physics Letters, 2013, 102(13):131108. doi: 10.1063/1.4800931
|
[114] |
KATS M A, BLANCHARD R, GENEVET P, et al.. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material[J]. Optics Letters, 2013, 38(3):368-370. doi: 10.1364/OL.38.000368
|
[115] |
YIN X, SCH FERLING M, MICHEL A U, et al.. Active chiral plasmonics[J]. Nano Letters, 2015, 15(7):4255-4260. doi: 10.1021/nl5042325
|