Volume 10 Issue 2
Apr.  2017
Turn off MathJax
Article Contents
ZHU Ye-chuan, YUAN Wei-zheng, YU Yi-ting. Planar plasmonic lenses and their applications[J]. Chinese Optics, 2017, 10(2): 149-163. doi: 10.3788/CO.20171002.0149
Citation: ZHU Ye-chuan, YUAN Wei-zheng, YU Yi-ting. Planar plasmonic lenses and their applications[J]. Chinese Optics, 2017, 10(2): 149-163. doi: 10.3788/CO.20171002.0149

Planar plasmonic lenses and their applications

doi: 10.3788/CO.20171002.0149
Funds:

National Natural Science Foundation of China 51375400

National Natural Science Foundation of China 51622509

Program for the New Century Excellent Talents in University 

Specific Project for the National Excellent Doctorial Dissertations 201430

Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University CX201606

  • Received Date: 24 Oct 2016
  • Rev Recd Date: 29 Nov 2016
  • Publish Date: 01 Apr 2017
  • The imaging resolution of conventional optical lenses is generally restricted to half the incident wavelength by the diffraction limit due to the decay of evanescent waves. Planar metallic lenses based on surface plasmons offer the possibility to overcome this limit by the enhancement of evanescent waves which carrying detailed feature information of object. In this paper, the structural design, physical mechanism and focusing performance of two types of typical planar metallic lenses are reviewed. Moreover, the existing problems in this imaging technology are discussed. Because there is a certain loss when the light propagates in the metal, how to more effectively enhance the high frequency evanescent wave signal and convert it to propagation wave which can participate in the imaging in order to better achieve the far-field super-resolution imaging, and how to further increase the ultra high resolution near-field focal depth of focusing spot and reduce size of the far-field focusing spot, are further research focuses of the surface plasmonic planar metallic lenses.

     

  • loading
  • [1]
    BORN M, WOLF E. Principles of Optics[M]. Cambridge University Press, 1999.
    [2]
    AUGUSTIN T, BHENDE S, CHAVDA K, et al.. Scanning near-field optical microscopy with aperture probes:fundamentals and applications[J]. J. Chem. Phys., 2000, 112(18):7761-7774. doi: 10.1063/1.481382
    [3]
    BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950):824-830. doi: 10.1038/nature01937
    [4]
    PENDRY J B, HOLDEN A J, ROBBINS D J, et al.. Low frequency plasmons in thin-wire structures[J]. J. Phys. Condens. Matter, 1998, 10(22):4785-4809. doi: 10.1088/0953-8984/10/22/007
    [5]
    陈泳屹, 佟存柱, 秦莉, 等.表面等离子体激元纳米激光器技术及应用研究进展[J].中国光学, 2012, 5(5):453-463. http://www.chineseoptics.net.cn/CN/abstract/abstract8877.shtml

    CHEN Y Y, TONG C ZH, QIN L, et al.. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chinese Optics, 2012, 5(5):453-463.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8877.shtml
    [6]
    蔡浩原.高分辨率表面等离子体显微镜综述[J].中国光学, 2014(5):691-700. http://www.chineseoptics.net.cn/CN/abstract/abstract9180.shtml

    CAI H Y. Review of high resolution surface plasmon microscopy[J]. Chinese Optics, 2014(5):691-700.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9180.shtml
    [7]
    PENDRY J B. Negative refraction makes a perfect lens[J]. Phys. Rev. Lett., 2000, 85(18):3966-3969. doi: 10.1103/PhysRevLett.85.3966
    [8]
    FANG N, LEE H, SUN C, et al.. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308:534-537. doi: 10.1126/science.1108759
    [9]
    ZHANG X, LIU Z. Superlenses to overcome the diffraction limit[J]. Nat. Mater., 2008, 7(6):435-41. doi: 10.1038/nmat2141
    [10]
    UENO K, TAKABATAKE S, NISHIJIMA Y, et al.. Nanogap-assisted surface plasmon nanolithography[J]. J. Phys. Chem. Lett., 2010, 1(3):657-662. doi: 10.1021/jz9002923
    [11]
    PAN L, PARK Y, XIONG Y, et al.. Maskless plasmonic lithography at 22 nm resolution[J]. Sci. Rep., 2011, 1(11):116-120. https://www.researchgate.net/publication/221852473_Maskless_Plasmonic_Lithography_at_22_nm_Resolution
    [12]
    GAO H, HYUN J K, LEE M H, et al.. Broadband plasmonic microlenses based on patches of nanoholes[J]. Nano Lett., 2010, 10(10):4111-4116. doi: 10.1021/nl1022892
    [13]
    YU Y, CHASSAING D, SCHERER T, et al.. The focusing and talbot effect of periodic arrays of metallic nanoapertures in high-index medium[J]. Plasmonics, 2013, 8(2):723-732. doi: 10.1007/s11468-012-9463-0
    [14]
    SHI H, WANG C, DU C, et al.. Beam manipulating by metallic nano-slits with variant widths[J]. Opt. Express, 2005, 13(18):6815-6820. doi: 10.1364/OPEX.13.006815
    [15]
    VERSLEGERS L, CATRYSSE P B, YU Z, et al.. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Lett., 2009, 9(1):235-238. doi: 10.1021/nl802830y
    [16]
    LIN L, GOH X M, MCGUINNESS L P, et al.. Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing[J]. Nano Lett., 2010, 10(5):1936-1940. doi: 10.1021/nl1009712
    [17]
    YU Y, ZAPPE H. Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design[J]. Opt. Express, 2011, 19(10):9434-9444. doi: 10.1364/OE.19.009434
    [18]
    YU Y, ZAPPE H. Theory and implementation of focal shift of plasmonic lenses[J]. Opt. Lett., 2012, 37(9):1592-1594. doi: 10.1364/OL.37.001592
    [19]
    ZHANG Y, FU Y, LIU Y, et al.. Experimental study of metallic elliptical nano-pinhole structure-based plasmonic lenses[J]. Plasmonics, 2011, 6(2):219-226. doi: 10.1007/s11468-010-9191-2
    [20]
    FU Y, LIU Y, ZHOU X, et al.. Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits[J]. Opt. Express, 2010, 18(4):3438-3443. doi: 10.1364/OE.18.003438
    [21]
    LIU Y, FU Y, ZHOU X, et al.. Experimental study of indirect phase tuning-based plasmonic structures for finely focusing[J]. Plasmonics, 2011, 6(2):227-233. doi: 10.1007/s11468-010-9192-1
    [22]
    ZHU Y, YUAN W, YU Y, et al.. Metallic planar lens formed by coupled width-variable nanoslits for superfocusing[J]. Opt. Express, 2015, 23(15):20124-20131. doi: 10.1364/OE.23.020124
    [23]
    史林兴, 王莉, 李华, 等.表面等离子体激元透镜设计及其数值计算[J].光学精密工程, 2010, 18(3):831-835. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201003029.htm

    SHI L X, WANG L, LI H, et al.. Design and numerical simulation of plasmon polariton nanolens[J]. Opt. Precision Eng., 2010, 18(4):831-835.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201003029.htm
    [24]
    DURANT S, LIU Z, STEELE J M, et al.. Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit[J]. J. Opt. Soc. Am. B, 2006, 23(11):2383-2392. doi: 10.1364/JOSAB.23.002383
    [25]
    LIU Z, DURANT S, LEE H, et al.. Far-field optical superlens[J]. Nano Lett., 2007, 7(2):403-408. doi: 10.1021/nl062635n
    [26]
    SRITURAVANICH W, FANG N, SUN C, et al.. Plasmonic nanolithography[J]. Nano Lett., 2004, 4(6):1085-1088. doi: 10.1021/nl049573q
    [27]
    MART NMORENO L, GARC AVIDAL F J, LEZEC H J, et al.. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Nature, 2001, 86(6):667-669. https://www.researchgate.net/publication/12152854_Theory_of_Extraordinary_Optical_Transmission_through_Subwavelength_Hole_Arrays
    [28]
    WANG L, UPPULURI S M, JIN E X, et al.. Nanolithography using high transmission nanoscale bowtie apertures[J]. Nano Lett., 2006, 6(3):361-364. doi: 10.1021/nl052371p
    [29]
    SUNDARAMURTHY A, SCHUCK P J, CONLEY N R, et al.. Toward nanometer-scale optical photolithography:utilizing the near-field of bowtie optical nanoantennas[J]. Nano Lett., 2006, 6(3):355-360. doi: 10.1021/nl052322c
    [30]
    ZHU Y, YUAN W, YU Y, et al.. Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits[J]. Plasmonics, 2016, DOI: 10.1007/s11468-016-0208-3.
    [31]
    ZHU Y, YUAN W, YU Y, et al.. Exploring the superfocusing performance of plasmonic lenses formed by coupled nanoslits[J]. Micro Nano Lett., 2016, DOI: 10.1049/mnl.2016.0288.
    [32]
    ROGERS E T, LINDBERG J, ROY T, et al.. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nat. Mater., 2012, 11(5):432-435. doi: 10.1038/nmat3280
    [33]
    DIAO J, YUAN W, YU Y, et al.. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles[J]. Opt. Express, 2016, 24(3):1924-1933. doi: 10.1364/OE.24.001924
    [34]
    YU Y, WANG P, ZHU Y, et al.. Broadband metallic planar microlenses in an array:the focusing coupling effect[J]. Nanoscale Res. Lett., 2016, 11(1):1-10. doi: 10.1186/s11671-015-1209-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(2)

    Article views(2841) PDF downloads(1146) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return