Volume 10 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
SHI Jing, WANG Xin-ke, ZHENG Xian-hua, HE Jing-wen, WANG Sen, XIE Zhen-wei, CUI Ye, YE Jia-sheng, SUN Wen-feng, FENG Sheng-fei, HAN Peng, ZHANG Yan. Recent advances in terahertz digital holography[J]. Chinese Optics, 2017, 10(1): 131-147. doi: 10.3788/CO.20171001.0131
Citation: SHI Jing, WANG Xin-ke, ZHENG Xian-hua, HE Jing-wen, WANG Sen, XIE Zhen-wei, CUI Ye, YE Jia-sheng, SUN Wen-feng, FENG Sheng-fei, HAN Peng, ZHANG Yan. Recent advances in terahertz digital holography[J]. Chinese Optics, 2017, 10(1): 131-147. doi: 10.3788/CO.20171001.0131

Recent advances in terahertz digital holography

doi: 10.3788/CO.20171001.0131
Funds:

Supported by National Program on Key Basic Research Projects of China 2013CBA01702

National Natural Science Foundation of China 11474206

National Natural Science Foundation of China 91233202

National Natural Science Foundation of China 11374216

National Natural Science Foundation of China 11404224

Program for New Century Excellent Talents in University, Ministry of Education of China NCET-12-0607

Scientific Research Project of Beijing Education Commission KM201310028005

Specialized Research Fund for the Doctoral Program of Higher Education 20121108120009

Scientific Research Base Development Program of the Beijing Municipal Commission of Education and the Beijing youth top-notch talent training plan CIT & TCD201504080

  • Received Date: 12 Sep 2016
  • Rev Recd Date: 14 Oct 2016
  • Publish Date: 25 Feb 2017
  • With the maturation of terahertz (THz) imaging technology, the spatial resolution, signal-to-noise ratio, imaging speed and ability acquiring information of the imaging system are gradually enhanced. Researchers have paid more attention to THz imaging applications in fundamental researches and industrial exploitation. In this paper, several recent studies of THz digital holography are reviewed, including performance demonstration of THz planar elements, function validation of optical tunable THz elements, observation of the longitudinal component in diffraction THz fields and analysis of THz surface waves on the metallic sub-wavelength devices. These research works are very valuable for the development of THz integration systems and THz imaging technology.

     

  • loading
  • [1]
    HU B B, NUSS M C. Imaging with terahertz waves[J]. Opt. Lett., 1995, 20(16):1716-1718. doi: 10.1364/OL.20.001716
    [2]
    MITTLEMAN D M, HUNSCHE S, BOIVIN L, et al.. T-ray tomography[J]. Opt. Lett., 1997, 22(12):904-906. doi: 10.1364/OL.22.000904
    [3]
    FISCHER B M, HOFFMANN M, HELM H, et al.. Terahertz time-domain spectroscopy and imaging of artificial RNA[J]. Opt. Express, 2005, 13(14):5205-5215. doi: 10.1364/OPEX.13.005205
    [4]
    NAKAJIMA S, HOSHINA H, YAMASHITA M, et al.. Terahertz imaging diagnostics of cancer tissues with a chemometrics technique[J]. Appl. Phys. Lett., 2007, 90(90):041102. https://www.researchgate.net/publication/234884547_Terahertz_imaging_diagnostics_of_cancer_tissues_with_a_chemometrics_technique
    [5]
    LEE K, JIN K H, YE J C, et al.. Coherent optical computing for T-ray imaging[J]. Opt. Lett., 2010, 35(4):508-510. doi: 10.1364/OL.35.000508
    [6]
    WU Q, SUN F G CAMPBELL P, et al.. Dynamic range of an electro-optic field sensor and its imaging applications[J]. Appl. Phys. Lett., 1996, 68(23):3224-3226. doi: 10.1063/1.116444
    [7]
    JIANG Z P, XU X G, ZHANG X C. Improvement of terahertz imaging with a dynamic subtraction technique[J]. Appl. Opt., 2000, 39(17):2982-2987. doi: 10.1364/AO.39.002982
    [8]
    RUNGSAWANG R, OHTA K, TUKAMOTO K, et al.. Ring formation of focused half-cycle terahertz pulse[J]. J. Phys. D:Appl. Phys., 2003, 36(3):229-235. doi: 10.1088/0022-3727/36/3/303
    [9]
    HATTORI T, SAKAMOTO M. Deformation corrected real-time terahertz imaging[J]. Appl. Phys. Lett., 2007, 90(26):261106. doi: 10.1063/1.2752543
    [10]
    FEURER T, VAUGHAN J C, NELSON K A. Spatiotemporal coherent control of lattice vibrational waves[J]. Science, 2003, 299(5605):374-377. doi: 10.1126/science.1078726
    [11]
    ZHONG H, SANCHEZ A R, ZHANG X C. Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system[J]. Opt. Express, 2006, 14(20):9130-9141. doi: 10.1364/OE.14.009130
    [12]
    YASUI T, SAWANAKA K I, IHARA A, et al.. Real-time terahertz color scanner for moving objects[J]. Opt. Express, 2008, 16(2):1208-1221. doi: 10.1364/OE.16.001208
    [13]
    BLANCHARD F, DOIA, TANAKA T. Real-time terahertz near-field microscope[J]. Opt. Express, 2011, 19(9):8277-8284. doi: 10.1364/OE.19.008277
    [14]
    WANG X K, CUI Y, SUN W F, et al.. Terahertz real-time imaging with balanced electro-optic detection[J]. Opt. Commun., 2010, 283(23):4626-4632. doi: 10.1016/j.optcom.2010.07.010
    [15]
    WANG X K, CUI Y, HU D, et al.. Terahertz quasi-near-field real-time imaging[J]. Opt. Commun., 2009, 282(24):4683-4687. doi: 10.1016/j.optcom.2009.09.004
    [16]
    WANG X K, CUI Y, SUN W F, et al.. Terahertz polarization real-time imaging based on balanced electro-optic detection[J]. J Opt. Soc. Am A, 2010, 27(11):2387-2393. doi: 10.1364/JOSAA.27.002387
    [17]
    JIMBA Y, TAKANO K, HANGYO M, et al.. Extraordinary optical transmission through incommensurate metal hole arrays in the terahertz region[J]. J Opt. Soc. Am A, 2013, 30(9):2476-2482. doi: 10.1364/JOSAB.30.002476
    [18]
    WU J F, NG B H, TURAGA S P, et al.. Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index[J]. Appl. Phys. Lett., 2013, 103(14):141106. doi: 10.1063/1.4823594
    [19]
    BULGAREVICH D S, WATANABE M, SHIWA M. Highly-efficient aperture array terahertz band-pass filtering[J]. Opt. Express, 2010, 18(24):25250-25255. doi: 10.1364/OE.18.025250
    [20]
    YU N F, GENEVET P, KATS M A, et al.. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 334(6054):333-337. doi: 10.1126/science.1210713
    [21]
    SUN S L, HE Q, XIAO S Y, et al.. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat. Mater., 2012, 11(5):426-431. doi: 10.1038/nmat3292
    [22]
    ZHANG X Q, TIAN Z, YUE W S, et al.. Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities[J]. Adv. Mater., 2013, 25(33):4566-4566. doi: 10.1002/adma.201370210
    [23]
    CHEN X Z, HUANG L L, MUHLENBERND H, et al.. Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens[J]. Adv. Opt. Mater., 2013, 1(7):517-521. doi: 10.1002/adom.v1.7
    [24]
    HU D, WANG X, FENG S, et al.. Ultrathin terahertz planar elements[J]. Adv. Opt. Mater., 2013, 1(2):186-191. doi: 10.1002/adom.201200044
    [25]
    HE J W, WANG X K, HU D, et al.. Generation and evolution of the terahertz vortex beam[J]. Opt. Express, 2013, 21(17):20230-20239. doi: 10.1364/OE.21.020230
    [26]
    WANG S, WANG X K, KAN Q, et al.. Spin-selected focusing and imaging based on metasurface lens[J]. Opt. Express, 2015, 23(20):26434-26441. doi: 10.1364/OE.23.026434
    [27]
    DENG L Y, TENG J H, LIU H W, et al.. Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings[J]. Adv. Opt. Mater., 2013, 1(2):128-132. doi: 10.1002/adom.201200032
    [28]
    BUSCH S, SCHERGER B, SCHELLER M, et al.. Optically controlled terahertz beam steering and imaging[J]. Opt. Lett., 2012, 37(8):1391-1393. doi: 10.1364/OL.37.001391
    [29]
    BUSCH S F, SCHUMANN S, JANSEN C, et al.. Optically gated tunable terahertz filters[J]. Appl. Phys. Lett., 2012, 100(26):261109. doi: 10.1063/1.4729480
    [30]
    RIZZA C, CIATTONI A, COLUMBO L, et al.. Terahertz optically tunable dielectric metamaterials without microfabrication[J]. Opt. Lett., 2013, 38(8):1307-1309. doi: 10.1364/OL.38.001307
    [31]
    WANG X K, XIE Z W, SUN W F, et al.. Focusing and imaging of a virtual all-optical tunable terahertz Fresnel zone plate[J]. Opt. Lett., 2013, 38(22):4731-4734. doi: 10.1364/OL.38.004731
    [32]
    XIE Z W, WANG X K, YE J S, et al.. Spatial terahertz modulator[J]. Sci. Rep., 2013, 3(11):3347. https://www.researchgate.net/publication/259564469_Spatial_Terahertz_Modulator
    [33]
    XIE Z W, HE J W, WANG X K, et al.. Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers[J]. Opt. Lett., 2015, 40(3):359-362. doi: 10.1364/OL.40.000359
    [34]
    NOVOTNY L, BEVERSLUIS M R, YOUNGWORTH K S, et al.. Longitudinal field modes probed by single molecules[J]. Phys. Rev. Lett., 2001, 86(23):5251-5254. doi: 10.1103/PhysRevLett.86.5251
    [35]
    QUABIS S, DORN R, EBERLER M, et al.. The focus of light theoretical calculation and experimental tomographic reconstruction[J]. Appl. Phys. B, 2001, 72(1):109-113. doi: 10.1007/s003400000451
    [36]
    MIYAJI G, MIYANAGA N, TSUBAKIMOTO K, et al.. Intense longitudinal electric fields generated from transverse electromagnetic waves[J]. Appl. Phys. Lett., 2004, 84(19):3855-3857. doi: 10.1063/1.1748843
    [37]
    WANG X K, WANG S, XIE Z W, et al.. Full vector measurements of converging terahertz beams with linear, circular, and cylindrical vortex polarization[J]. Opt. Express, 2014, 22(20):24622-24634. doi: 10.1364/OE.22.024622
    [38]
    WANG S, ZHAO F, WANG X K, et al.. Comprehensive imaging of terahertz surface plasmon polaritons[J]. Opt. Express, 2014, 22(14):16916-16924. doi: 10.1364/OE.22.016916
    [39]
    WANG X K, SUN W F, CUI Y, et al.. Complete presentation of the Gouy phase shift with the THz digital holography[J]. Opt. Express, 2013, 21(2):2337-2346. doi: 10.1364/OE.21.002337
    [40]
    WANG S, WANG X K, ZHAO F, et al.. Observation and explanation of polarization-controlled focusing of terahertz surface plasmon polaritons[J]. Phys. Rev. A, 2015, 91(5):053812. doi: 10.1103/PhysRevA.91.053812
    [41]
    HEBLING J, YEH K L, HOFFMANN M C, et al.. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities[J]. J. Opt. Soc. Am. B, 2008, 25(7):B6-B19. doi: 10.1364/JOSAB.25.0000B6
    [42]
    VICARIO C, MONOSZLAI B, HAURI C P, et al.. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal[J]. Phys. Rev. Lett., 2014, 112(21):213901. doi: 10.1103/PhysRevLett.112.213901
    [43]
    叶全意, 杨春.光子学太赫兹源研究进展[J].中国光学, 2012, 5(1):1-11. http://www.chineseoptics.net.cn/CN/abstract/abstract8776.shtml

    YE Q Y, YANG CH. Recent progress in THz sources based on photonics methods[J]. Chinese Optics, 2012, 5(1):1-11.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8776.shtml
    [44]
    BOPPEL S, LISAUSKAS A, MAX A, et al.. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging[J]. Opt. Lett., 2012, 37(4):536-538. doi: 10.1364/OL.37.000536
    [45]
    FAN S Z, QI F, NOTAKE T, et al.. Real-time terahertz wave imaging by nonlinear optical frequency up-conversion in a 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate crystal[J]. Appl. Phys. Lett., 2014, 104(10):101106. doi: 10.1063/1.4868134
    [46]
    李宏光, 杨鸿儒, 薛战理, 等.窄带光谱滤光法探测低温黑体太赫兹辐射[J].光学精密工程, 2013, 21(6):1410-1416. doi: 10.3788/OPE.

    LI H G, YANG H R, XUE ZH L, et al.. Terahertz radiation detection of low temperature blackbody based on narrowband spectral filter method[J]. Optics and Precision Engineering, 2013, 21(6):1410-1416.(in Chinese) doi: 10.3788/OPE.
    [47]
    潘学聪, 姚泽瀚, 徐新龙, 等.太赫兹波段超材料的制作、设计及应用[J].中国光学, 2013, 6(3):283-296. http://www.chineseoptics.net.cn/CN/abstract/abstract8954.shtml

    PAN X C, YAO Z H, XU X L, et al.. Fabrication, design and application of THz metamaterials[J]. Chinese Optics, 2013, 6(3):283-296.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8954.shtml
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(2543) PDF downloads(1090) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return