Volume 10 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
E Yi-wen, HUANG Yuan-yuan, XU Xin-long, WANG Li. Polarization sensitive terahertz measurements and applications[J]. Chinese Optics, 2017, 10(1): 98-113. doi: 10.3788/CO.20171001.0098
Citation: E Yi-wen, HUANG Yuan-yuan, XU Xin-long, WANG Li. Polarization sensitive terahertz measurements and applications[J]. Chinese Optics, 2017, 10(1): 98-113. doi: 10.3788/CO.20171001.0098

Polarization sensitive terahertz measurements and applications

doi: 10.3788/CO.20171001.0098
Funds:

Supported by National Key Basic Research Program 2014CB339800

National Natural Science Foundation of China 11374240

National Natural Science Foundation of China 11374358

Ph.D. Programs Foundation of Ministry of Education of China 201310110007

More Information
  • Corresponding author: E-mail:xlxuphy@nwu.edu.cn
  • Received Date: 27 Oct 2016
  • Rev Recd Date: 17 Nov 2016
  • Publish Date: 25 Feb 2017
  • In Maxwell equations, the electromagnetic response of a medium is usually described by permittivity ε(ω) and permeability μ(ω) in constitutive relations. For an electromagnetic field propagating in a medium, there exist two independent eigen modes in general, each of which is a special particular solution of Maxwell equations, satisfies a unique dispersion relation and keeps its own polarization during propagation. If a traveling electromagnetic field is a linear superposition of the two eigen modes, its polarization will constantly change as propagating in medium, such as birefringence in anisotropic crystals, polarization modulation in metamaterials, optical activity in natural chiral materials and external magnetic field induced Faraday effects, etc. In this review, terahertz time-domain polarization measurement system is introduced, including principle, data processing and measurement accuracy. Polarization modulation using wire grid polarizer, metamaterial and other optical methods are discussed in detail. The applications of the polarization measurement system are reviewed in analyzing properties of chiral metamaterials, terahertz circular dichroism spectroscopy and Faraday effects. Finally, we give a brief comment on the future development and prospect of the polarization sensitive terahertz measurement technique.

     

  • loading
  • [1]
    TONOUCHI M. Cutting-edge terahertz technology[J]. Nat. Photonics, 2007, 1(2):97-105. doi: 10.1038/nphoton.2007.3
    [2]
    DORNEY T D, BARANIUK R G, MITTLEMAN D M. Material parameter estimation with terahertz time-domain spectroscopy[J]. J. Opt. Soc. Am. A, 2001, 18(7):1562-1571. doi: 10.1364/JOSAA.18.001562
    [3]
    JEPSEN P U, COOKE D G, KOCH M. Terahertz spectroscopy and imaging-Modern techniques and applications[J]. Laser & Photonics Reviews, 2011, 5(1):124-166. http://orbit.dtu.dk/en/publications/terahertz-spectroscopy-and-imaging--modern-techniques-and-applications(48eb87c2-9425-43ba-9bba-10d35ef83e59)/export.html
    [4]
    SHEN Y C, UPADHYA P C, LINFIELD E H, et al.. Temperature-dependent low-frequency vibrational spectra of purine and adenine[J]. Appl. Phys. Lett., 2003, 82(14):2350-2352. doi: 10.1063/1.1565680
    [5]
    TAKAHASHI M. Terahertz vibrations and hydrogen-bonded networks in crystals[J]. Crystals, 2014, 4(2):74. doi: 10.3390/cryst4020074
    [6]
    潘学聪, 姚泽翰, 徐新龙, 等.太赫兹波段超材料的制作、设计及应用[J].中国光学, 2013, 6(3):283-296. http://www.opticsjournal.net/abstract.htm?aid=OJ130701000340jQmSpV

    PAN X C, YAO Z H, XU X L, et al.. Fabrication, design and application of THz metamaterials[J]., 2013, 6(3):283-296.(in Chinese) http://www.opticsjournal.net/abstract.htm?aid=OJ130701000340jQmSpV
    [7]
    SMITH D R, PENDRY J B, WILTSHIRE M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792. doi: 10.1126/science.1096796
    [8]
    HUANG S-W, GRANADOS E, HUANG W R, et al.. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate[J]. Optics Letters, 2013, 38(5):796-798. doi: 10.1364/OL.38.000796
    [9]
    LIU K, KOULOUKLIDIS A D, PAPAZOGLOU D G, et al.. Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams[J]. Optica, 2016, 3(6):605-608. doi: 10.1364/OPTICA.3.000605
    [10]
    KAMPFRATH T, SELL A, KLATT G, et al.. Coherent terahertz control of antiferromagnetic spin waves[J]. Nat. Photon., 2011, 5(1):31-34. doi: 10.1038/nphoton.2010.259
    [11]
    SCHUBERT O, HOHENLEUTNER M, LANGER F, et al.. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nat. Photon., 2014, 8(2):119-123. doi: 10.1038/nphoton.2013.349
    [12]
    LANGE C, MAAG T, HOHENLEUTNER M, et al.. Extremely nonperturbative nonlinearities in gaas driven by atomically strong terahertz fields in gold metamaterials[J]. Phys. Rev. Lett., 2014, 113(22):227401. doi: 10.1103/PhysRevLett.113.227401
    [13]
    SEIFERTT, JAISWALS, MARTENS U, et al.. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation[J]. Nat. Photon., 2016, 10(7):483-488. doi: 10.1038/nphoton.2016.91
    [14]
    FINNERAN I A, GOOD J T, HOLLAND D B, et al.. Decade-spanning high-precision terahertz frequency comb[J]. Phys. Rev. Lett., 2015, 114(16):163902. doi: 10.1103/PhysRevLett.114.163902
    [15]
    CHEN H-T, PADILLA W J, ZIDE J M O, et al.. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119):597-600. doi: 10.1038/nature05343
    [16]
    GU J, SINGH R, LIU X, et al.. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat. Commun., 2012, 3:1151. doi: 10.1038/ncomms2153
    [17]
    ZHANG S, PARK Y S, LI J S, et al.. Negative refractive index in chiral metamaterials[J]. Physical Review Letters, 2009, 102(2):023901. doi: 10.1103/PhysRevLett.102.023901
    [18]
    KONG J A. Electromagnetic Wave TheoryJohn[M]. Wiley and Sons Ltd, 1986.
    [19]
    BARRON L D. Molecular Light Scattering and Optical Activity[M]. 2nd ed. Cambridge Universtiy Press, 2004.
    [20]
    BAI B, SVIRKO Y, TURUNEN J, et al.. Optical activity in planar chiral metamaterials:theoretical study[J]. Physical Review A, 2007, 76(2):023811. doi: 10.1103/PhysRevA.76.023811
    [21]
    HUANG Y Y, YAO Z H, WANG Q, et al.. Coupling Tai Chi Chiral metamaterials with strong optical activity in terahertz region[J]. Plasmonics, 2015, 10(4):1005-1011. doi: 10.1007/s11468-015-9892-7
    [22]
    徐新龙, 黄媛媛, 姚泽翰, 等.手性超材料的设计、电磁特性及应用[J].西北大学学报, 2016, 46(1):1-12 http://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201601001.htm

    XU X L, HUANG Y Y, YAO Z H, et al.. The design, electromagnetic properties and applications of chiral metamaterials[J]. J. Northwest University, 2016, 46(1):1-12.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201601001.htm
    [23]
    JEON T-I, GRISCHKOWSKY D. Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy[J]. Applied Physics Letters, 1998, 72(23):3032-3034. doi: 10.1063/1.121531
    [24]
    NASHIMA S, MORIKAWA O, TAKATA K, et al.. Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy[J]. Applied Physics Letters, 2001, 79(24):3923-3925. doi: 10.1063/1.1413498
    [25]
    PASHKIN A, KEMPA M, NĚMEC H, et al.. Phase-sensitive time-domain terahertz reflection spectroscopy[J]. Review of Scientific Instruments, 2003, 74(11):4711-4717. doi: 10.1063/1.1614878
    [26]
    NAGASHIMA T, TANI M, HANGYO M. Polarization-sensitive THz-TDS and its application to anisotropy sensing[J]. J. Infrared Millimeter and Terahertz Waves, 2013, 34(11):740-775. doi: 10.1007/s10762-013-0020-5
    [27]
    PLANKEN P C M, NIENHUYS H-K, BAKKER H J, et al.. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe[J]. J. Opt. Soc. Am. B, 2001, 18(3):313-317. doi: 10.1364/JOSAB.18.000313
    [28]
    NAGASHIMA T, HANGYO M. Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry[J]. Applied Physics Letters, 2001, 79(24):3917-3919. doi: 10.1063/1.1426258
    [29]
    MATSUMOTO N, HOSOKURA T, NAGASHIMA T, et al.. Measurement of the dielectric constant of thin films by terahertz time-domain spectroscopic ellipsometry[J]. Optics Letters, 2011, 36(2):265-267. doi: 10.1364/OL.36.000265
    [30]
    NESHAT M, ARMITAGE N P. Terahertz time-domain spectroscopic ellipsometry:instrumentation and calibration[J]. Opt. Express, 2012, 20(27):29063-29075. doi: 10.1364/OE.20.029063
    [31]
    TOMPKINS H G, IRENE E A. Handbook of Ellipsometry[M]. Norwich, NY:William Andrew Publishing, 2005.
    [32]
    GOLDSTEIN D. Polarized Light[M]. 2nd edMarcel Dekker Ltd, 2003.
    [33]
    IWATA T, UEMURA H, MIZUTANI Y, et al.. Double-modulation reflection-type terahertz ellipsometer for measuring the thickness of a thin paint coating[J]. Opt. Express, 2014, 22(17):20595-20606. doi: 10.1364/OE.22.020595
    [34]
    LÜ Z, ZHANG D, MENG C, et al.. Polarization-sensitive air-biased-coherent-detection for terahertz wave[J]. Applied Physics Letters, 2012, 101(8):081119. doi: 10.1063/1.4748171
    [35]
    CASTRO-CAMUS E, LLOYD-HUGHES J, JOHNSTON M B, et al.. Polarization-sensitive terahertz detection by multicontact photoconductive receivers[J]. Applied Physics Letters, 2005, 86(25):254102. doi: 10.1063/1.1951051
    [36]
    MAKABE H, HIROTA Y, TANI M, et al.. Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna[J]. Opt. Express, 2007, 15(18):11650-11657. doi: 10.1364/OE.15.011650
    [37]
    BULGAREVICH D S, WATANABE M, SHIWA M, et al.. A polarization-sensitive 4-contact detector for terahertz time-domain spectroscopy[J]. Opt. Express, 2014, 22(9):10332-10340. doi: 10.1364/OE.22.010332
    [38]
    NAHATA A, WELING A S, HEINZ T F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling[J]. Applied Physics Letters, 1996, 69(16):2321-2323. doi: 10.1063/1.117511
    [39]
    NEMOTO N, HIGUCHI T, KANDA N, et al.. Highly precise and accurate terahertz polarization measurements based on electro-optic sampling with polarization modulation of probe pulses[J]. Opt. Express, 2014, 22(15):17915-17929. doi: 10.1364/OE.22.017915
    [40]
    ADE P A R, COSTLEY A E, CUNNINGHAM C T, et al.. Free-standing grids wound from 5μm diameter wire for spectroscopy at far-infrared wavelengths[J]. Infrared Physics, 1979, 19(5):599-601. doi: 10.1016/0020-0891(79)90080-0
    [41]
    YAMADA I, TAKANO K, HANGYO M, et al.. Terahertz wire-grid polarizers with micrometer-pitch Al gratings[J]. Optics Letters, 2009, 34(3):274-276. doi: 10.1364/OL.34.000274
    [42]
    COSTLEY A E, HURSEY K H, NEILL G F, et al.. Free-standing fine-wire grids:their manufacture, performance, and use at millimeter and submillimeter wavelengths[J]. J. Opt. Soc. Am., 1977, 67(7):979-981. doi: 10.1364/JOSA.67.000979
    [43]
    KYOUNG J, JANG E Y, LIMA M D, et al.. A reel-wound carbon nanotube polarizer for terahertz frequencies[J]. Nano Letters, 2011, 11(10):4227-4231. doi: 10.1021/nl202214y
    [44]
    AKIMA N, IWASA Y, BROWN S, et al.. Strong anisotropy in the far-infrared absorption spectra of stretch-aligned single-walled carbon nanotubes[J]. Advanced Materials, 2006, 18(9):1166-1169. doi: 10.1002/(ISSN)1521-4095
    [45]
    REN L, PINT C L, ARIKAWA T, et al.. Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks[J]. Nano Letters, 2012, 12(2):787-790. doi: 10.1021/nl203783q
    [46]
    XU X L, PARKINSON P, CHUANG K C, et al.. Dynamic terahertz polarization in single-walled carbon nanotubes[J]. Physical Review B, 2010, 82(8):085441. doi: 10.1103/PhysRevB.82.085441
    [47]
    HSIEH C-F, LAI Y-C, PAN R-P, et al.. Polarizing terahertz waves with nematic liquid crystals[J]. Optics Letters, 2008, 33(11):1174-1176. doi: 10.1364/OL.33.001174
    [48]
    WITHAYACHUMNANKUL W, ABBOTT D. Metamaterials in the Terahertz Regime[J]. IEEE Photonics Journal, 2009, 1(2):99-118. doi: 10.1109/JPHOT.2009.2026288
    [49]
    MARKOVICH D L, ANDRYIEUSKI A, ZALKOVSKIJ M, et al.. Metamaterial polarization converter analysis:limits of performance[J]. Applied Physics B, 2013, 112(2):143-152. doi: 10.1007/s00340-013-5383-8
    [50]
    LONGQING C, WEI C, ZHEN T, et al.. Manipulating polarization states of terahertz radiation using metamaterials[J]. New J. Physics, 2012, 14(11):115013. doi: 10.1088/1367-2630/14/11/115013
    [51]
    WU J, NG B, LIANG H, et al.. Chiral metafoils for terahertz broadband high-contrast flexible circular polarizers[J]. Physical Review Applied, 2014, 2(1):014005. doi: 10.1103/PhysRevApplied.2.014005
    [52]
    KANDA N, KONISHI K, KUWATA-GONOKAMI M. All-photoinduced terahertz optical activity[J]. Optics Letters, 2014, 39(11):3274-3277. doi: 10.1364/OL.39.003274
    [53]
    KAN T, ISOZAKI A, KANDA N, et al.. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals[J]. Nat. Commun., 2015, 6:8422. doi: 10.1038/ncomms9422
    [54]
    SHAN J, DADAP J I, HEINZ T F, Circularly polarized light in the single-cycle limit:the nature of highly polychromatic radiation of defined polarization[J]. Opt. Express, 2009, 17(9):7431-7439. doi: 10.1364/OE.17.007431
    [55]
    SATO M, HIGUCHI T, KANDA N, et al.. Terahertz polarization pulse shaping with arbitrary field control[J]. Nat. Photon., 2013, 7(9):724-731. doi: 10.1038/nphoton.2013.213
    [56]
    KIM K Y, TAYLOR A J, GLOWNIA J H, et al.. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions[J]. Nat. Photon., 2008, 2(10):605-609. doi: 10.1038/nphoton.2008.153
    [57]
    LU X, ZHANG X C. Generation of elliptically polarized terahertz waves from laser-induced plasma with double helix electrodes[J]. Physical Review Letters, 2012, 108(12):123903. doi: 10.1103/PhysRevLett.108.123903
    [58]
    RAMAKRISHNA S A. Physics of negative refractive index materials[J]. Rep. Prog. Phys., 2005, 68(2):449-521. doi: 10.1088/0034-4885/68/2/R06
    [59]
    PENDRY J B. A chiral route to negative refraction[J]. Science, 2004, 306(5700):1353-1355. doi: 10.1126/science.1104467
    [60]
    PLUM E, ZHOU J, DONG J, et al.. Metamaterial with negative index due to chirality[J]. Physical Review B, 2009, 79(3):035407. doi: 10.1103/PhysRevB.79.035407
    [61]
    WANG B N, ZHOU J F, KOSCHNY T, et al.. Chiral metamaterials:simulations and experiments[J]. J. Opt. A-Pure Appl. Opt., 2009, 11(11):114003. doi: 10.1088/1464-4258/11/11/114003
    [62]
    ZHOU J, CHOWDHURY D R, ZHAO R, et al.. Terahertz chiral metamaterials with giant and dynamically tunable optical activity[J]. Physical Review B, 2012, 86(3):035448. doi: 10.1103/PhysRevB.86.035448
    [63]
    SINGH R, PLUM E, MENZEL C, et al.. Terahertz metamaterial with asymmetric transmission[J]. Physical Review B, 2009, 80(15):153104 doi: 10.1103/PhysRevB.80.153104
    [64]
    GRADY N K, HEYES J E, CHOWDHURY D R, et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138):1304-1307. doi: 10.1126/science.1235399
    [65]
    JING X, GALAN J, RAMIAN G, et al.. Terahertz circular dichroism spectroscopy of biomolecules[J]. SPIE, 2003, 5268:19-26.
    [66]
    ARIKAWA T, WANG X, BELYANIN A A, et al.. Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics[J]. Opt. Express, 2012, 20(17):19484-19492. doi: 10.1364/OE.20.019484
    [67]
    CRASSEE I, LEVALLOIS J, WALTER A L, et al.. Giant Faraday rotation in single-and multilayer graphene[J]. Nat. Phys., 2011, 7(1):48-51. doi: 10.1038/nphys1816
    [68]
    SHUVAEV A M, ASTAKHOV G V, PIMENOV A, et al.. Giant magneto-optical faraday effect in hgte thin films in the terahertz spectral range[J]. Physical Review Letters, 2011, 106(10):107404. doi: 10.1103/PhysRevLett.106.107404
    [69]
    PRUISKEN A M M. Universal singularities in the integral quantum hall effect[J]. Physical Review Letters, 1988, 61(11):1297-1300. doi: 10.1103/PhysRevLett.61.1297
    [70]
    IKEBE Y, MORIMOTO T, MASUTOMI R, et al.. Optical hall effect in the integer quantum hall regime[J]. Physical Review Letters, 2010, 104(25):256802. doi: 10.1103/PhysRevLett.104.256802
    [71]
    SHIMANO R, YUMOTO G, YOO J Y, et al.. Quantum Faraday and Kerr rotations in graphene[J]. Nat. Commun., 2013, 4:1841. doi: 10.1038/ncomms2866
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article views(2606) PDF downloads(786) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return