Volume 10 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
CHEN Xie-yu, TIAN Zhen. Recent progress in terahertz dynamic modulation based on graphene[J]. Chinese Optics, 2017, 10(1): 86-97. doi: 10.3788/CO.20171001.0086
Citation: CHEN Xie-yu, TIAN Zhen. Recent progress in terahertz dynamic modulation based on graphene[J]. Chinese Optics, 2017, 10(1): 86-97. doi: 10.3788/CO.20171001.0086

Recent progress in terahertz dynamic modulation based on graphene

doi: 10.3788/CO.20171001.0086
Funds:

Supported by National Program on Key Basic Research Projects of China 2014CB339800

National Natural Science Foundation of China 61427814

National Natural Science Foundation of China 61138001

National Natural Science Foundation of China 61422509

More Information
  • Corresponding author: E-mail:tianzhen@tju.edu.cn
  • Received Date: 13 Sep 2016
  • Rev Recd Date: 20 Oct 2016
  • Publish Date: 25 Feb 2017
  • Graphene is a two-dimensional material and has unique electrical and optical properties, which has been widely used in the research of terahertz wave dynamic modulation in recent years. In this paper, we reviews the terahertz wave dynamic modulation device based on graphene, analyze the principle and advantages and disadvantages of three kind of modulation methods such as electrical modulation, optical modulation and photoelectric hybrid modulation. We introduce a series of research achievements on the application of graphene in THz wave dynamic modulation in recent years, compare and analyze the advantages and disadvantages of the modulation performance of different devices. Graphene tunable metamaterial provides a new way to achieve more rapid and efficient terahertz modulator.

     

  • loading
  • [1]
    FERGUSON B, ZHANG X C. Materials for terahertz science and technology[J]. Nature Mater, 2002, 1:26-33. doi: 10.1038/nmat708
    [2]
    SCHEMUTTENMAER C A. Exploring dynamics in the far-infrared with terahertz spectroscopy[J]. Chem. Rev., 2004, 104:1759-1779. doi: 10.1021/cr020685g
    [3]
    HANGYO M, et al.. Terahertz time-domain spectroscopy of solids:a review[J]. International J. infrared and Millimeter Waves, 2006, 12:1661-1690. http://www.docin.com/p-1016688179.html
    [4]
    TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photo., 2007, 1:97-105. doi: 10.1038/nphoton.2007.3
    [5]
    蔡禾, 郭雪娇, 和挺, 等.太赫兹技术及其应用研究进展[J].中国光学与应用光学, 2010, 3(3):209-222. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201003005.htm

    CAI H, GUO X J, HE T, et al.. Terahertz wave and its new applications[J]. Chinese J. Optics and Applied Optics, 2010, 3(3):209-222.(in chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201003005.htm
    [6]
    许景周, 张希成.太赫兹科学技术和应用[M].北京:北京大学出版社, 2007.

    XU J ZH, ZHANG X CH. Terahertz Science Technology and Applications[M]. Beijing:Peking University Press, 2007.
    [7]
    LI Q, ZHANG X, CAO W, et al.. An approach for mechanically tunable, dynamic terahertz bandstop filters[J]. Applied Physics A, 2012, 107(2):285-291. https://www.researchgate.net/publication/256693257_An_approach_for_mechanically_tunable_dynamic_terahertz_bandstop_filters
    [8]
    CHIANG Y J, YEN T J. A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission[J]. Applied Physics Letters, 2013, 102(1):011129. doi: 10.1063/1.4774300
    [9]
    WEN X, ZHENG J. Broadband THz reflective polarization rotator by multiple plasmon resonances[J]. Optics Express, 2014, 22(23):28292-28300. doi: 10.1364/OE.22.028292
    [10]
    张检发, 袁晓东, 秦石乔.可调太赫兹与光学超材料[J].中国光学, 2014, 7(3):349-364. http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml

    ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3):349-364.(in chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml
    [11]
    ZHELUDEV NI, KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11):917-924. doi: 10.1038/nmat3431
    [12]
    FU Y H, LIU A Q, ZHU W M, et al.. A Micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators[J]. Advanced Functional Materials, 2011, 21(18):3589-3594. doi: 10.1002/adfm.201101087
    [13]
    SU X, OUYANG C, XU N, et al.. Active metasurface terahertz deflector with phase discontinuities[J]. Optics Express, 2015, 23(21):27152-27158. doi: 10.1364/OE.23.027152
    [14]
    SU X, OUYANG C, XU N, et al.. Broadband terahertz transparency in a switchable metasurface[J]. IEEE Photonics J., 2015, 7(1):1-8. http://www.docin.com/p-1467191395.html
    [15]
    SENSALE-RODRIGUEZ B, FANG T, YAN R, et al.. Unique prospects for graphene-based terahertz modulators[J]. Applied Physics Letters, 2011, 99(11):113104. doi: 10.1063/1.3636435
    [16]
    ZHANG Y, FENG Y, ZHU B, et al.. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency[J]. Optics Express, 2014, 22(19):22743-22752. doi: 10.1364/OE.22.022743
    [17]
    ANDRYIEUSKI A, LAVRINENKO A V. Graphene metamaterials based tunable terahertz absorber:effective surface conductivity approach[J]. Optics Express, 2013, 21(7):9144-9155. doi: 10.1364/OE.21.009144
    [18]
    ZHANG Y, TAN Y W, STORMER H L, et al.. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065):201-204. doi: 10.1038/nature04235
    [19]
    MAK K F, SFEIR M Y, WU Y, et al.. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 2008, 101(19):196405. doi: 10.1103/PhysRevLett.101.196405
    [20]
    GEIM A K. Graphene:status and prospects[J]. Science, 2009, 324(5934):1530-1534. doi: 10.1126/science.1158877
    [21]
    CHEN P Y, AL A. Terahertz metamaterial devices based on graphene nanostructures[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6):748-756. doi: 10.1109/TTHZ.2013.2285629
    [22]
    SENSALE-RODRIGUEZ B, YAN R, RAFIQUE S, et al.. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators[J]. Nano Letters, 2012, 12(9):4518-4522. doi: 10.1021/nl3016329
    [23]
    SENSALE-RODRIGUEZ B, YAN R, KELLY M M, et al.. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 2012, 3:780. doi: 10.1038/ncomms1787
    [24]
    WU Y, LAOVORAKIAT C, QIU X, et al.. Graphene Terahertz modulators by ionic liquid gating[J]. Advanced Materials, 2015, 27(11):1874-1879. doi: 10.1002/adma.v27.11
    [25]
    KAKENOV N, TAKAN T, OZKAN V A, et al.. Graphene-enabled electrically controlled terahertz spatial light modulators[J]. Optics Letters, 2015, 40(9):1984-1987. doi: 10.1364/OL.40.001984
    [26]
    DEGL'INNOCENTI R, JESSOP D S, SHAH Y D, et al.. Low-bias terahertz amplitude modulator based on split-ring resonators and graphene[J]. ACS Nano, 2014, 8(3):2548-2554. doi: 10.1021/nn406136c
    [27]
    VALMORRA F, SCALARI G, MAISSEN C, et al.. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial[J]. Nano Letters, 2013, 13(7):3193-3198. doi: 10.1021/nl4012547
    [28]
    HE X, LI T, WANG L, et al.. Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene[J]. J. Applied Physics, 2014, 115(17):17B903. doi: 10.1063/1.4866079
    [29]
    LEE S H, CHOI M, KIM T T, et al.. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials, 2012, 11(11):936-941. doi: 10.1038/nmat3433
    [30]
    GAO W, SHU J, REICHEL K, et al.. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures[J]. Nano Letters, 2014, 14(3):1242-1248. doi: 10.1021/nl4041274
    [31]
    HI S F, ZENG B, HAN H L, et al.. Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures[J]. Nano Letters, 2014, 15(1):372-377. https://www.researchgate.net/publication/269284684_Optimizing_Broadband_Terahertz_Modulation_with_Hybrid_GrapheneMetasurface_Structures
    [32]
    CHEN C F, PARK C H, BOUDOURIS B W, et al.. Controlling inelastic light scattering quantum pathways in graphene[J]. Nature, 2011, 471(7340):617-620. doi: 10.1038/nature09866
    [33]
    SHI S F, TANG T T, ZENG B, et al.. Controlling graphene ultrafast hot carrier response from metal-like to semiconductor-like by electrostatic gating[J]. Nano Letters, 2014, 14(3):1578-1582. doi: 10.1021/nl404826r
    [34]
    LIANG G, HU X, YU X, et al.. Integrated Terahertz graphene modulator with 100% modulation depth[J]. ACS Photonics, 2015, 2(11):1559-1566. doi: 10.1021/acsphotonics.5b00317
    [35]
    SHI F, CHEN Y, HAN P, et al.. Broadband, spectrally flat, graphene-based terahertz modulators[J]. Small, 2015, 11(45):6044-6050. doi: 10.1002/smll.201502036
    [36]
    MAO Q, WEN Q Y, TIAN W, et al.. High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors[J]. Optics Letters, 2014, 39(19):5649-5652. doi: 10.1364/OL.39.005649
    [37]
    WEIS P, GARCIA-POMAR J L, HO H M, et al.. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 2012, 6(10):9118-9124. doi: 10.1021/nn303392s
    [38]
    [39]
    LI Q, TIAN Z, ZHANG X, et al.. Dual control of active graphene silicon hybrid metamaterial devices[J]. Carbon, 2015, 90:146-153. doi: 10.1016/j.carbon.2015.04.015
    [40]
    LI Q, TIAN Z, ZHANG X, et al.. Active graphene-silicon hybrid diode for terahertz waves[J]. Nature Communications, 2015, 6. http://terahertz.tju.edu.cn/paper/paper114.pdf
    [41]
    JIANG R, HAN Z, SUN W, et al.. Ferroelectric modulation of terahertz waves with graphene/ultrathin-Si:HfO2/Si structures[J]. Applied Physics Letters, 2015, 107(15):151105. doi: 10.1063/1.4933275
    [42]
    LOW T, AVOURIS P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 2014, 8(2):1086-1101. doi: 10.1021/nn406627u
    [43]
    YAN H, LOW T, ZHU W, et al.. Damping pathways of mid-infrared plasmons in graphene nanostructures[J]. Nature Photonics, 2013, 7(5):394-399. doi: 10.1038/nphoton.2013.57
    [44]
    YAN H, LI X, CHANDRA B, et al.. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5):330-334. doi: 10.1038/nnano.2012.59
    [45]
    JU L, GENG B, HORNG J, et al.. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10):630-634. doi: 10.1038/nnano.2011.146
    [46]
    LIU P Q, LUXMOORE I J, MIKHAILOV S A, et al.. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons[J]. Nature Communications, 2015, 6. https://www.researchgate.net/publication/271218382_Highly_tunable_hybrid_metamaterials_employing_split-ring_resonators_strongly_coupled_to_graphene_surface_plasmons?_sg=HNaDW7isyY04tlYM3chCmgZbYEL3sW1d5a7vYZooqP3KFgOn30GsFlTAT8RmgPRMJLOSnx-8A_5qEyYP91TChQ
    [47]
    HU X, WANG J. High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene[J]. Optics Letters, 2015, 40(23):5538-5541. doi: 10.1364/OL.40.005538
    [48]
    FARAJI M, MORAVVEJ-FARSHI M K, YOUSEFI L. Tunable THz perfect absorber using graphene-based metamaterials[J]. Optics Communications, 2015, 355:352-355. doi: 10.1016/j.optcom.2015.06.050
    [49]
    ZHU L, FAN Y, WU S, et al.. Electrical control of terahertz polarization by graphene microstructure[J]. Optics Communications, 2015, 346:120-123. doi: 10.1016/j.optcom.2015.02.032
    [50]
    YANG K, LIU S, AREZOOMANDAN S, et al.. Graphene-based tunable metamaterial terahertz filters[J]. Applied Physics Letters, 2014, 105(9):093105. doi: 10.1063/1.4894807
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(2432) PDF downloads(819) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return