Volume 10 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
YANG Jing, GONG Cheng, ZHAO Jia-yu, TIAN Hao-lin, SUN Lu, CHEN Ping, LIN Lie, LIU Wei-wei. Fabrication of terahertz device by 3D printing technology[J]. Chinese Optics, 2017, 10(1): 77-85. doi: 10.3788/CO.20171001.0077
Citation: YANG Jing, GONG Cheng, ZHAO Jia-yu, TIAN Hao-lin, SUN Lu, CHEN Ping, LIN Lie, LIU Wei-wei. Fabrication of terahertz device by 3D printing technology[J]. Chinese Optics, 2017, 10(1): 77-85. doi: 10.3788/CO.20171001.0077

Fabrication of terahertz device by 3D printing technology

doi: 10.3788/CO.20171001.0077
Funds:

Supported by National Basic Research Program of China 2014CB339802

National Natural Science Foundation of China 11574160

Tianjin Research Program of Application Foundation and Advanced Technology 15JCZDJC31700

National Science Foundation for Young Scientists of China 61505087

More Information
  • Corresponding author: E-mail:liuweiwei@nankai.edu.cn
  • Received Date: 12 Sep 2016
  • Rev Recd Date: 11 Oct 2016
  • Publish Date: 25 Feb 2017
  • High performance terahertz devices play an essential role in controlling terahertz waves to realize diverse applications. Here we report our work on the design of THz devices manufactured by a commercially available 3D printer, and the parameters of samples are measured by transmission terahertz time-domain spectroscopy system. Taking terahertz waveguide and terahertz filter as examples, Kagome photonic crystal waveguide and one-dimensional photonic crystal structure filter are chosen respectively, and we experimentally demonstrate that the obtained waveguide features average power propagation loss of 0.02 cm-1(the minimum is about 0.002 cm-1) in the range of 0.2-1.0 THz. More interesting, it could be simply mechanically spliced to obtain longer waveguides without causing serious loss. Besides, Terahertz filter features two apparent high loss bands between 0.1-0.5 THz. The transmission characteristics of both the waveguide and the filter are well predicted by the corresponding numerical simulation. The fabricated approach of THz devices based on the 3D printing technique will be a promising solution to fabricate terahertz device with well controllable characteristics and low cost.

     

  • loading
  • [1]
    IMESHEV G, FERMANN M E, VODOPYANOV K L, et al.. High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser[J]. Optics Express, 2006, 14(10):4439-4444. doi: 10.1364/OE.14.004439
    [2]
    SHI W, HOU L, LIU Z, et al.. Terahertz generation from SI-GaAs stripline antenna with different structural parameters[J]. J. Optical Society of America B, 2009, 26(9):A107-A112. doi: 10.1364/JOSAB.26.00A107
    [3]
    TANG M, MINAMIDE M, WANG Y, et al.. Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation[J]. Optics Letters, 2010, 35(10):1698-1700. doi: 10.1364/OL.35.001698
    [4]
    CAI Y, BRENER I, LOPATA J, et al.. Coherent terahertz radiation detection:direct comparison between free-space electro-optic sampling and antenna detection[J]. Applied Physics Letters, 1998, 73(4):444-446. doi: 10.1063/1.121894
    [5]
    KARPOWICZ N E, CHEN J, TONGUE T, et al.. Coherent millimeter wave to mid-infrared measurements with continuous bandwidth reaching 40 THz[J]. Electronics Letters, 2008, 44(8):544-545. doi: 10.1049/el:20080356
    [6]
    TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2):97-105. doi: 10.1038/nphoton.2007.3
    [7]
    ABBOTT D, ZHANG X C. Scanning the issue:T-Ray imaging, sensing, and retection[J]. Proc. IEEE, 2007, 95(8):1509-1513 doi: 10.1109/JPROC.2007.900894
    [8]
    于磊, 文春华.基于3D打印的THz波导成型技术研究进展[J].微波学报, 2015, 3:61-64. http://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2015S1017.htm

    YU L, WEN CH H. Research advance of prototyping of terahertz waveguides based on 3D printing[J]. J. Microwaves, 2015, 3:61-64.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2015S1017.htm
    [9]
    KODAMA H. Automatic method for fabricating a 3-dimensional plastic model with photo-hardening polymer[J]. Review of Scientific Instruments, 1981, 52(11):1770-1773. doi: 10.1063/1.1136492
    [10]
    SACHS E, CIMA M, WILLIAMS P, et al.. 3-Dimensional printing-rapid tooling and prototypes directly from a CAD model[J]. ASME J. Engineering for Industry, 1992, 114(4):481-488. doi: 10.1115/1.2900701
    [11]
    张敏, 刘畅, 任博, 等.3D打印激光制备多孔镍合金组织和力学性能研究[J].中国光学, 2016, 9(3):335-341. doi: 10.3788/co.

    ZHANG M, LIU C, REN B, et al.. Microstructure and mechanical properties of porous Ni alloy fabricated by laser 3D printing[J]. Chinese Optics, 2016, 9(3):335-341.(in Chinese) doi: 10.3788/co.
    [12]
    BUSCH S, WEIDENBACHE M, FEY M, et al.. Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics[J]. J. Infrared, Millimeter, Terahertz Waves, 2014, 35(12):993-997. doi: 10.1007/s10762-014-0113-9
    [13]
    SQUIRES A, CONSTABLE E, LEWIS R. 3D printed terahertz diffraction gratings and lenses[J]. J. Infrared, Millimeter, Terahertz Waves, 2015, 36(1):72-80. doi: 10.1007/s10762-014-0122-8
    [14]
    WEI X, LIU C, ZHANG Z, et al.. Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates[J]. SPIE, 2014, 9275:92751P-8. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1935521
    [15]
    PANDEY S, GUPTA B, NAHATA A. Terahertz plasmonic waveguides created via 3D printing[J]. Optics Express, 2013, 21(21):24422-24430. doi: 10.1364/OE.21.024422
    [16]
    YUDASARI N, ANTHONY J, LEONHARDT R. Terahertz pulse propagation in 3D-printed waveguide with metal wires component[J]. Optics Express, 2014, 22(21):26042-26054. doi: 10.1364/OE.22.026042
    [17]
    VOGT D W, ANTHONY J, LEONHARDT R. Metallic and 3D-printed dielectric helical terahertz waveguides[J]. Optics Express, 2015, 23(26):33359-33369. doi: 10.1364/OE.23.033359
    [18]
    WU Z, NG. W, GEHM M, et al.. Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping[J]. Optics Express, 2011, 19(5):3962-3972. doi: 10.1364/OE.19.003962
    [19]
    MONRO T M, RICHARDSON D J, BENNETT P J. Developing holey fibers for evanescent field devices[J]. Electronics Letters, 1999, 35(14):1188-1189. doi: 10.1049/el:19990780
    [20]
    FINI J M. Microstructure fibres for optical sensing in gases and liquids[J]. Measurement Science and Technology, 2004, 15(6), 1120-1128. doi: 10.1088/0957-0233/15/6/011
    [21]
    ARGYROS A, VAN EIJKELENBORG M A, LARGE M C J, et al.. Hollow-core microstructure polymer optical fiber[J]. Optics Letters, 2006, 31(2):172-174. doi: 10.1364/OL.31.000172
    [22]
    COX F M, ARGROS A, LARGE M C J. Liquid-filled hollow core microstructured polymer optical fiber[J]. Optics Express, 2006, 14(9):4135-4140. doi: 10.1364/OE.14.004135
    [23]
    ANTHONY J, LEONHARDT R, LEON-SAVAL S G, et al.. THz propagation in Kagome hollow-core microstructured fibers[J]. Optics Express, 2011, 19(19):18470-18478. doi: 10.1364/OE.19.018470
    [24]
    SETTI V, VINCETTI L, ARGYROS A. Flexible tube lattice fibers for terahertz applications[J]. Optics Express, 2013, 21(3):3388-3399. doi: 10.1364/OE.21.003388
    [25]
    LAI C H, YOU B, LU J Y, et al.. Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding[J]. Optics Express, 2010, 18(1):309-322. doi: 10.1364/OE.18.000309
    [26]
    WANG K, MITTLEMAN D M. Metal wires for terahertz wave guiding[J]. Nature, 2004, 432(7015):376-379. doi: 10.1038/nature03040
    [27]
    NORDQUIST C D, WANKE M C, ROWEN A M, et al.. Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz[C]. IEEE AP-S Int. Symp., San Diego, CA, USA:2008:1-4.
    [28]
    GOTO M, QUEMA A, TAKAHASHI H, et al.. Teflon photonic crystal fiber as Terahertz waveguide[J]. Japanese J. Applied Physics, 2004, 43:L317-L319. doi: 10.1143/JJAP.43.L317
    [29]
    WU Z, KINAST J, GEHM M E, et al.. Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures[J]. Optics Express, 2008, 16(21):16442-16451. doi: 10.1364/OE.16.016442
    [30]
    HE J, LIU P, HE Y, et al.. Narrow bandpass tunable terahertz filter based on photonic crystal cavity[J]. Applied Optics, 2012, 51(6):776-779 doi: 10.1364/AO.51.000776
    [31]
    TURCHINOVICH D, KAMMOUN A, KNOBLOCH P, et al.. Flexible all-plastic mirrors for the THz range[J]. Applied Physics A, 2002, 74(2):291-293. doi: 10.1007/s003390101036
    [32]
    WITHAYACHUMNANKUL W, FISCHER B M, ABBOTT D. Quarter-wavelength multilayer interference filter for terahertz waves[J]. Optics Communications, 2008, 281(9):2374-2379. doi: 10.1016/j.optcom.2007.12.094
    [33]
    XU J, CHEN L, ZANG X, et al.. Triple-channel terahertz filter based on mode coupling of cavities resonance system[J]. Applied Physics Letters, 2013, 103(16):161116. doi: 10.1063/1.4826456
    [34]
    董莘, 赵寒梅, 吴冈."打印-加工"一体式3D打印技术的研究[J].行业应用与交流, 2015, 34(12):98-105. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ201512022.htm

    DONG S, ZHAO H M, WU G. Study of 3D print technology in "3D print-cuting process" combining[J]. Industrial Applications and Communications, 2015, 34(12):98-105.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ201512022.htm
    [35]
    JIN Y S, KIM G, JEON S G. Terahertz dielectric properties of polymers[J]. J. Korean Physical Society, 2006, 49(2):513-517. https://www.researchgate.net/publication/280018171_Terahertz_dielectric_properties_of_polymers
    [36]
    YANG J, HE S, ZHAO J, et al.. Polarization-dependent optimization of fiber-coupled terahertz time-domain spectroscopy system[J]. J. Electronic Science and Technology, 2015, 13(1):2-5. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKE201501002.htm
    [37]
    ZHAO J, ZHANG Y, WANG Z, et al.. Propagation of terahertz wave inside femtosecond laser filament in air[J]. Laser Physics Letters, 2014, 11(9):095302. doi: 10.1088/1612-2011/11/9/095302
    [38]
    CHEN J, CHEN Y, ZHAO H, et al.. Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz[J]. Optics Experess, 2007, 15(19):12060-12067. doi: 10.1364/OE.15.012060
    [39]
    YANG J, YANG B, WANG Z, et al.. Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers[J]. Optics Communications, 2015, 343(15):150-156. https://www.researchgate.net/profile/Weiwei_Liu27/publication/272964358_Design_of_the_low-loss_wide_bandwidth_hollow-core_terahertz_inhibited_coupling_fibers/links/553dcf400cf2c415bb0f7868.pdf?origin=publication_detail
    [40]
    YANG J, ZHAO J, GONG C, et al.. 3D printed low-loss THz waveguide based on Kagome photonic crystal structure[J]. Optics Experess, 2016, 24(20):22454-22460. doi: 10.1364/OE.24.022454
    [41]
    YABLANS A D. Optical Fiber Fusion Splicing[M]. Heidelberg:Springer-Verilog Press, 2005.
    [42]
    LITCHINITSER N M, ABEELUCK A K, HEADLEY C, et al.. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 2002, 27:1592-1594. doi: 10.1364/OL.27.001592
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(1772) PDF downloads(598) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return