Volume 10 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
YANG Jing, GONG Cheng, ZHAO Jia-yu, TIAN Hao-lin, SUN Lu, CHEN Ping, LIN Lie, LIU Wei-wei. Fabrication of terahertz device by 3D printing technology[J]. Chinese Optics, 2017, 10(1): 77-85. doi: 10.3788/CO.20171001.0077
Citation: YANG Jing, GONG Cheng, ZHAO Jia-yu, TIAN Hao-lin, SUN Lu, CHEN Ping, LIN Lie, LIU Wei-wei. Fabrication of terahertz device by 3D printing technology[J]. Chinese Optics, 2017, 10(1): 77-85. doi: 10.3788/CO.20171001.0077

Fabrication of terahertz device by 3D printing technology

doi: 10.3788/CO.20171001.0077

Supported by National Basic Research Program of China 2014CB339802

National Natural Science Foundation of China 11574160

Tianjin Research Program of Application Foundation and Advanced Technology 15JCZDJC31700

National Science Foundation for Young Scientists of China 61505087

More Information
  • Corresponding author: E-mail:liuweiwei@nankai.edu.cn
  • Received Date: 12 Sep 2016
  • Rev Recd Date: 11 Oct 2016
  • Publish Date: 25 Feb 2017
  • High performance terahertz devices play an essential role in controlling terahertz waves to realize diverse applications. Here we report our work on the design of THz devices manufactured by a commercially available 3D printer, and the parameters of samples are measured by transmission terahertz time-domain spectroscopy system. Taking terahertz waveguide and terahertz filter as examples, Kagome photonic crystal waveguide and one-dimensional photonic crystal structure filter are chosen respectively, and we experimentally demonstrate that the obtained waveguide features average power propagation loss of 0.02 cm-1(the minimum is about 0.002 cm-1) in the range of 0.2-1.0 THz. More interesting, it could be simply mechanically spliced to obtain longer waveguides without causing serious loss. Besides, Terahertz filter features two apparent high loss bands between 0.1-0.5 THz. The transmission characteristics of both the waveguide and the filter are well predicted by the corresponding numerical simulation. The fabricated approach of THz devices based on the 3D printing technique will be a promising solution to fabricate terahertz device with well controllable characteristics and low cost.


  • loading
  • [1]
    IMESHEV G, FERMANN M E, VODOPYANOV K L, et al.. High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser[J]. Optics Express, 2006, 14(10):4439-4444. doi: 10.1364/OE.14.004439
    SHI W, HOU L, LIU Z, et al.. Terahertz generation from SI-GaAs stripline antenna with different structural parameters[J]. J. Optical Society of America B, 2009, 26(9):A107-A112. doi: 10.1364/JOSAB.26.00A107
    TANG M, MINAMIDE M, WANG Y, et al.. Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation[J]. Optics Letters, 2010, 35(10):1698-1700. doi: 10.1364/OL.35.001698
    CAI Y, BRENER I, LOPATA J, et al.. Coherent terahertz radiation detection:direct comparison between free-space electro-optic sampling and antenna detection[J]. Applied Physics Letters, 1998, 73(4):444-446. doi: 10.1063/1.121894
    KARPOWICZ N E, CHEN J, TONGUE T, et al.. Coherent millimeter wave to mid-infrared measurements with continuous bandwidth reaching 40 THz[J]. Electronics Letters, 2008, 44(8):544-545. doi: 10.1049/el:20080356
    TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2):97-105. doi: 10.1038/nphoton.2007.3
    ABBOTT D, ZHANG X C. Scanning the issue:T-Ray imaging, sensing, and retection[J]. Proc. IEEE, 2007, 95(8):1509-1513 doi: 10.1109/JPROC.2007.900894
    于磊, 文春华.基于3D打印的THz波导成型技术研究进展[J].微波学报, 2015, 3:61-64. http://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2015S1017.htm

    YU L, WEN CH H. Research advance of prototyping of terahertz waveguides based on 3D printing[J]. J. Microwaves, 2015, 3:61-64.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2015S1017.htm
    KODAMA H. Automatic method for fabricating a 3-dimensional plastic model with photo-hardening polymer[J]. Review of Scientific Instruments, 1981, 52(11):1770-1773. doi: 10.1063/1.1136492
    SACHS E, CIMA M, WILLIAMS P, et al.. 3-Dimensional printing-rapid tooling and prototypes directly from a CAD model[J]. ASME J. Engineering for Industry, 1992, 114(4):481-488. doi: 10.1115/1.2900701
    张敏, 刘畅, 任博, 等.3D打印激光制备多孔镍合金组织和力学性能研究[J].中国光学, 2016, 9(3):335-341. doi: 10.3788/co.

    ZHANG M, LIU C, REN B, et al.. Microstructure and mechanical properties of porous Ni alloy fabricated by laser 3D printing[J]. Chinese Optics, 2016, 9(3):335-341.(in Chinese) doi: 10.3788/co.
    BUSCH S, WEIDENBACHE M, FEY M, et al.. Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics[J]. J. Infrared, Millimeter, Terahertz Waves, 2014, 35(12):993-997. doi: 10.1007/s10762-014-0113-9
    SQUIRES A, CONSTABLE E, LEWIS R. 3D printed terahertz diffraction gratings and lenses[J]. J. Infrared, Millimeter, Terahertz Waves, 2015, 36(1):72-80. doi: 10.1007/s10762-014-0122-8
    WEI X, LIU C, ZHANG Z, et al.. Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates[J]. SPIE, 2014, 9275:92751P-8. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1935521
    PANDEY S, GUPTA B, NAHATA A. Terahertz plasmonic waveguides created via 3D printing[J]. Optics Express, 2013, 21(21):24422-24430. doi: 10.1364/OE.21.024422
    YUDASARI N, ANTHONY J, LEONHARDT R. Terahertz pulse propagation in 3D-printed waveguide with metal wires component[J]. Optics Express, 2014, 22(21):26042-26054. doi: 10.1364/OE.22.026042
    VOGT D W, ANTHONY J, LEONHARDT R. Metallic and 3D-printed dielectric helical terahertz waveguides[J]. Optics Express, 2015, 23(26):33359-33369. doi: 10.1364/OE.23.033359
    WU Z, NG. W, GEHM M, et al.. Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping[J]. Optics Express, 2011, 19(5):3962-3972. doi: 10.1364/OE.19.003962
    MONRO T M, RICHARDSON D J, BENNETT P J. Developing holey fibers for evanescent field devices[J]. Electronics Letters, 1999, 35(14):1188-1189. doi: 10.1049/el:19990780
    FINI J M. Microstructure fibres for optical sensing in gases and liquids[J]. Measurement Science and Technology, 2004, 15(6), 1120-1128. doi: 10.1088/0957-0233/15/6/011
    ARGYROS A, VAN EIJKELENBORG M A, LARGE M C J, et al.. Hollow-core microstructure polymer optical fiber[J]. Optics Letters, 2006, 31(2):172-174. doi: 10.1364/OL.31.000172
    COX F M, ARGROS A, LARGE M C J. Liquid-filled hollow core microstructured polymer optical fiber[J]. Optics Express, 2006, 14(9):4135-4140. doi: 10.1364/OE.14.004135
    ANTHONY J, LEONHARDT R, LEON-SAVAL S G, et al.. THz propagation in Kagome hollow-core microstructured fibers[J]. Optics Express, 2011, 19(19):18470-18478. doi: 10.1364/OE.19.018470
    SETTI V, VINCETTI L, ARGYROS A. Flexible tube lattice fibers for terahertz applications[J]. Optics Express, 2013, 21(3):3388-3399. doi: 10.1364/OE.21.003388
    LAI C H, YOU B, LU J Y, et al.. Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding[J]. Optics Express, 2010, 18(1):309-322. doi: 10.1364/OE.18.000309
    WANG K, MITTLEMAN D M. Metal wires for terahertz wave guiding[J]. Nature, 2004, 432(7015):376-379. doi: 10.1038/nature03040
    NORDQUIST C D, WANKE M C, ROWEN A M, et al.. Design, fabrication, and characterization of metal micromachined rectangular waveguides at 3 THz[C]. IEEE AP-S Int. Symp., San Diego, CA, USA:2008:1-4.
    GOTO M, QUEMA A, TAKAHASHI H, et al.. Teflon photonic crystal fiber as Terahertz waveguide[J]. Japanese J. Applied Physics, 2004, 43:L317-L319. doi: 10.1143/JJAP.43.L317
    WU Z, KINAST J, GEHM M E, et al.. Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures[J]. Optics Express, 2008, 16(21):16442-16451. doi: 10.1364/OE.16.016442
    HE J, LIU P, HE Y, et al.. Narrow bandpass tunable terahertz filter based on photonic crystal cavity[J]. Applied Optics, 2012, 51(6):776-779 doi: 10.1364/AO.51.000776
    TURCHINOVICH D, KAMMOUN A, KNOBLOCH P, et al.. Flexible all-plastic mirrors for the THz range[J]. Applied Physics A, 2002, 74(2):291-293. doi: 10.1007/s003390101036
    WITHAYACHUMNANKUL W, FISCHER B M, ABBOTT D. Quarter-wavelength multilayer interference filter for terahertz waves[J]. Optics Communications, 2008, 281(9):2374-2379. doi: 10.1016/j.optcom.2007.12.094
    XU J, CHEN L, ZANG X, et al.. Triple-channel terahertz filter based on mode coupling of cavities resonance system[J]. Applied Physics Letters, 2013, 103(16):161116. doi: 10.1063/1.4826456
    董莘, 赵寒梅, 吴冈."打印-加工"一体式3D打印技术的研究[J].行业应用与交流, 2015, 34(12):98-105. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ201512022.htm

    DONG S, ZHAO H M, WU G. Study of 3D print technology in "3D print-cuting process" combining[J]. Industrial Applications and Communications, 2015, 34(12):98-105.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ201512022.htm
    JIN Y S, KIM G, JEON S G. Terahertz dielectric properties of polymers[J]. J. Korean Physical Society, 2006, 49(2):513-517. https://www.researchgate.net/publication/280018171_Terahertz_dielectric_properties_of_polymers
    YANG J, HE S, ZHAO J, et al.. Polarization-dependent optimization of fiber-coupled terahertz time-domain spectroscopy system[J]. J. Electronic Science and Technology, 2015, 13(1):2-5. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKE201501002.htm
    ZHAO J, ZHANG Y, WANG Z, et al.. Propagation of terahertz wave inside femtosecond laser filament in air[J]. Laser Physics Letters, 2014, 11(9):095302. doi: 10.1088/1612-2011/11/9/095302
    CHEN J, CHEN Y, ZHAO H, et al.. Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz[J]. Optics Experess, 2007, 15(19):12060-12067. doi: 10.1364/OE.15.012060
    YANG J, YANG B, WANG Z, et al.. Design of the low-loss wide bandwidth hollow-core terahertz inhibited coupling fibers[J]. Optics Communications, 2015, 343(15):150-156. https://www.researchgate.net/profile/Weiwei_Liu27/publication/272964358_Design_of_the_low-loss_wide_bandwidth_hollow-core_terahertz_inhibited_coupling_fibers/links/553dcf400cf2c415bb0f7868.pdf?origin=publication_detail
    YANG J, ZHAO J, GONG C, et al.. 3D printed low-loss THz waveguide based on Kagome photonic crystal structure[J]. Optics Experess, 2016, 24(20):22454-22460. doi: 10.1364/OE.24.022454
    YABLANS A D. Optical Fiber Fusion Splicing[M]. Heidelberg:Springer-Verilog Press, 2005.
    LITCHINITSER N M, ABEELUCK A K, HEADLEY C, et al.. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 2002, 27:1592-1594. doi: 10.1364/OL.27.001592
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(1772) PDF downloads(598) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint