Volume 10 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
TAN Zhi-yong, WAN Wen-jian, LI Hua, CAO Jun-cheng. Progress in real-time imaging based on terahertz quantum-cascade lasers[J]. Chinese Optics, 2017, 10(1): 68-76. doi: 10.3788/CO.20171001.0068
Citation: TAN Zhi-yong, WAN Wen-jian, LI Hua, CAO Jun-cheng. Progress in real-time imaging based on terahertz quantum-cascade lasers[J]. Chinese Optics, 2017, 10(1): 68-76. doi: 10.3788/CO.20171001.0068

Progress in real-time imaging based on terahertz quantum-cascade lasers

doi: 10.3788/CO.20171001.0068
Funds:

National Program on Key Basic Research Projects of China 2014CB339803

National Natural Science Foundation of China 61131006

National Natural Science Foundation of China 61321492

National Natural Science Foundation of China 61575214

National Natural Science Foundation of China 61405233

Major National Development Project of Scientific Instrument and Equipment 2011YQ150021

Hundred Talent Program of the China Academy Sciences 

International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology 14530711300

International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology 15DZ0500103

More Information
  • Corresponding author: CAO Jun-cheng, E-mail:jccao@mail.sim.ac.cn
  • Received Date: 19 Sep 2016
  • Rev Recd Date: 12 Oct 2016
  • Publish Date: 01 Feb 2017
  • Terahertz (THz) real-time imaging is a promising field in most of THz technologies. It has lots of features such as fast imaging, high-resolution imaging, etc. The imaging system based on THz quantum-cascade laser (QCL) is one of the most important THz imaging techologies. This type of imaging system has a unique advantage in applications with the features of small size, light weight, and high SNR. In this paper, the research progress of THz QCL and the related real-time imaging system are mainly presented. A hyper-hemispherical high-resistivity silicon lens is used to improve the beam quality of THz QCL. Then a quasi-Gaussian light beam is acquired in imaging system. A THz real-time imaging system is constructed by employing a two dimensional wobbling mirror to eliminate the interference of the THz light. A beam spot size of 45 mm×30 mm for single frame imaging is obtained. The real-time imaging for blade and tablets is demonstrated with a resolution better than 0.5 mm. Finally, the improvements of the source, optics, and detector array of the system and the imaging effect are summarized. The application prospect in material analysis and bio-medical imaging as well as the future trends of the real-time imaging system are discussed.

     

  • loading
  • [1]
    TONOUCHI M. Cutting-edge terahertz technology[J]. Nat. Photon., 2007, 1:97-105. doi: 10.1038/nphoton.2007.3
    [2]
    DEAN P, VALAVANIS A, KEELEY J, et al.. Terahertz imaging using quantum cascade lasers-a review of systems and applications[J]. J. Physics D:Applied Physics, 2014, 47:374008. doi: 10.1088/0022-3727/47/37/374008
    [3]
    WALLACE V P, MACPHERSON E, ZEITLER J A, et al.. Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation[J]. J. Opt. Soc. Am. A, 2008, 25:3120-3133. doi: 10.1364/JOSAA.25.003120
    [4]
    蔡禾, 郭雪娇, 和挺, 等.太赫兹技术及其应用研究进展[J].中国光学, 2010, 15(3):209-222. http://www.chineseoptics.net.cn/CN/abstract/abstract8446.shtml

    CAI H, GUO X J, HE T, et al.. Terahertz wave and its new applications[J]. Chinese Optics, 2010, 15(3):209-222.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8446.shtml
    [5]
    KUMAR S. Recent progress in terahertz quantum cascade lasers[J]. IEEE J. Sel. Top. Quantum Electron., 2011, 17(1):38-47. doi: 10.1109/JSTQE.2010.2049735
    [6]
    叶全意, 杨春.光子学太赫兹源研究进展[J].中国光学, 2012, 5(1):1-11. http://www.chineseoptics.net.cn/CN/abstract/abstract8776.shtml

    YE Q Y, YANG CH. Recent progress in THz sources based on photonics methods[J]. Chinese Optics, 2012, 5(1):1-11.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8776.shtml
    [7]
    ODA N, YONEYAMA H, SASAKI T, et al.. Detection of terahertz radiation from quantum cascade laser, using vanadium oxide microbolometer focal plane arrays[J]. SPIE, 2008, 6940:69402Y. doi: 10.1117/12.781630
    [8]
    ODA N, ISHI T, MORIMOTO T, et al.. Real-time transmission-type terahertz microscope with palm size terahertz camera and compact quantum cascade laser[J]. SPIE, 2012, 8496:84960Q. http://dspace.mit.edu/openaccess-disseminate/1721.1/87070
    [9]
    CHAN W L, DIEBEL J AND MITTLEMAN D M. Imaging with terahertz radiation[J]. Rep. Prog. Phys., 2007, 70:1325-1379. doi: 10.1088/0034-4885/70/8/R02
    [10]
    HU B B, NUSS M C. Imaging with terahertz waves[J]. Opt. Lett., 1995, 20:1716-1718. doi: 10.1364/OL.20.001716
    [11]
    DARMO J, TAMOSIUNAS V, FASCHING G, et al.. Imaging with a terahertz quantum cascade laser[J]. Opt. Express, 2004, 12:1879-1884. doi: 10.1364/OPEX.12.001879
    [12]
    KIM S M, HATAMI F, HARRIS J S, et al.. Biomedical terahertz imaging with a quantum cascade laser[J]. Appl. Phys. Lett., 2006, 88:153903. doi: 10.1063/1.2194229
    [13]
    李琦, 胡佳琦, 杨永发.太赫兹Gabor同轴数字全息二维再现像复原[J].光学精密工程, 2014, 22(8):2188-2195. doi: 10.3788/OPE.

    LI Q, HU J Q, YANG Y F. 2D reconstructed-image restoration of terahertz Gabor in-line digital holography[J]. Opt. Precision Eng., 2014, 22(8):2188-2195.(in Chinese) doi: 10.3788/OPE.
    [14]
    ROTHBART N, RICHTER H, WIENOLD M, et al.. Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror[J]. IEEE Trans. THz Sci. Technol., 2013, 3:617-624. doi: 10.1109/TTHZ.2013.2273226
    [15]
    LEE A W M, HU Q. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array[J]. Opt. Lett., 2005, 30(19):2563-2565. doi: 10.1364/OL.30.002563
    [16]
    LEE A W M, WILLIAMS B S, KUMAR S, et al.. Real-time imaging using a 4.3-THz quantum cascade laser and a 320×240 microbolometer focal-plane array[J]. IEEE Photon. Technol. Lett., 2006, 18(13):1415-1417. doi: 10.1109/LPT.2006.877220
    [17]
    K HLER R, TREDICUCCI A, BELTRAM F, et al.. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417:156-159. doi: 10.1038/417156a
    [18]
    AJILI L, SCALARI G, HOFSTETTER D, et al.. Continuous-wave operation of far-infrared quantum cascade lasers[J]. Electron. Lett., 2002, 38(25):1675-1676. doi: 10.1049/el:20021143
    [19]
    SCALARI G, WALTHER C, FISCHER M, et al.. THz and sub-THz quantum cascade lasers laser[J]. Photon. Rev., 2008, 3:45-66.
    [20]
    CHAN C W I, HU Q, RENO J L. Ground state terahertz quantum cascade lasers[J]. Appl. Phys. Lett., 2012, 101:151108. doi: 10.1063/1.4759043
    [21]
    WIENOLD M, R BEN B, SCHROTTKE L, et al.. High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback[J]. Opt. Express, 2014, 22:3334-3348. doi: 10.1364/OE.22.003334
    [22]
    WANG X, SHEN C, JIANG T, et al.. High-power terahertz quantum cascade lasers with~0.23 W in continuous wave mode[J]. AIP Advances, 2016, 6:075210. doi: 10.1063/1.4959195
    [23]
    FATHOLOLOUMI S, DUPONT E, CHAN C W I, et al.. Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling[J]. Opt. Express, 2012, 20:3866-3876. doi: 10.1364/OE.20.003866
    [24]
    LI L H, ZHU J X, CHEN L, et al.. The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers[J]. Opt. Express, 2015, 23(3):2720-2729. doi: 10.1364/OE.23.002720
    [25]
    VITIELLO M S, CONSOLINO L, BARTALINI S, et al.. Quantum-limited frequency fluctuations in a terahertz laser[J]. Nat. Photon., 2012, 6:525-528. doi: 10.1038/nphoton.2012.145
    [26]
    VITIELLO M S, TREDICUCCI A. Tunable emission in THz quantum cascade lasers[J]. IEEE Trans. THz Sci. Technol., 2011, 1:76-84. doi: 10.1109/TTHZ.2011.2159543
    [27]
    BR NDERMANN E, HAVENITH M, SCALARI G, et al.. Turn-key compact high temperature terahertz quantum cascade lasers:imaging and room temperature detection[J]. Opt. Express, 2006, 14:1829-1841. doi: 10.1364/OE.14.001829
    [28]
    RICHTER H, GREINER-B R M, PAVLOV S G, et al.. A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler[J]. Opt. Express, 2010, 18:10177-10187. doi: 10.1364/OE.18.010177
    [29]
    AMANTI M I, SCALARI G, BECK M, et al.. Stand-alone system for high-resolution, real-time terahertz imaging[J]. Opt. Express, 2012, 20:2772-2778. doi: 10.1364/OE.20.002772
    [30]
    姚睿, 丁胜晖, 李琦, 等.2.52 THz面阵透射成像系统改进及分辨率分析[J].中国激光, 2011, 38(1):0111001. doi: 10.3788/CJL

    YAO R, DING SH J, LI Q, et al.. Improvement of 2.52 THz array transmission imaging system and resolution analysis[J]. Chinese J. Lasers, 2011, 38(1):0111001.(in Chinese) doi: 10.3788/CJL
    [31]
    LEE A W M, QIN Q, KUMAR S, et al.. Real-time terahertz imaging over a standoff distance (>25 meters)[J]. Appl. Phys. Lett., 2006, 89:141125. doi: 10.1063/1.2360210
    [32]
    BERGERON A, TERROUX M, MARCHESE L, et al.. Components, concepts, and technologies for useful video rate THz imaging[J]. SPIE, 2012, 8544:85440C.
    [33]
    HOSAKO I, SEKINE N, ODA N, et al.. A real-time terahertz imaging system consisting of terahertz quantum cascade laser and uncooled microbolometer array detector[J]. SPIE, 2011, 8023:80230A. https://www.researchgate.net/publication/252343260_A_real-time_terahertz_imaging_system_consisting_of_Terahertz_quantum_cascade_laser_and_uncooled_microbolometer_array_detector
    [34]
    ODA N, LEE A W M, ISHIA T, et al.. Proposal for real-time terahertz imaging system, with palm-size Terahertz camera and compact quantum cascade laser[J]. SPIE, 2012, 8363:83630A. http://adsabs.harvard.edu/abs/2012SPIE.8363E...4O
    [35]
    ADAM A J L, KA ALYNAS I, HOVENIER J N, et al.. Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions[J]. Appl. Phys. Lett., 2006, 88:151105. doi: 10.1063/1.2194889
    [36]
    AMANTI M I, FISCHER M, SCALARI G, et al.. Low divergence single-mode terahertz quantum cascade laser[J]. Nat. Photon., 2009, 3:586-590. doi: 10.1038/nphoton.2009.168
    [37]
    YU N, WANG Q J, KATS M A, et al.. Designer spoof surface plasmon structures collimate terahertz laser beams[J]. Nat. Mater., 2010, 9:730-735. doi: 10.1038/nmat2822
    [38]
    ODA N, ISHI T, KURASHINA S, et al.. Palm-size and real-time terahertz imager, and its application to development of terahertz sources[J]. SPIE, 2013, 8716:871603. http://adsabs.harvard.edu/abs/2013SPIE.8716E..03O
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views(2479) PDF downloads(631) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return