Volume 10 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
QIN Hua, HUANG Yong-dan, SUN Jian-dong, ZHANG Zhi-peng, YU Yao, LI Xiang, SUN Yun-fei. Terahertz-wave devices based on plasmons in two-dimensional electron gas[J]. Chinese Optics, 2017, 10(1): 51-67. doi: 10.3788/CO.20171001.0051
Citation: QIN Hua, HUANG Yong-dan, SUN Jian-dong, ZHANG Zhi-peng, YU Yao, LI Xiang, SUN Yun-fei. Terahertz-wave devices based on plasmons in two-dimensional electron gas[J]. Chinese Optics, 2017, 10(1): 51-67. doi: 10.3788/CO.20171001.0051

Terahertz-wave devices based on plasmons in two-dimensional electron gas

doi: 10.3788/CO.20171001.0051
Funds:

National Natural Science Foundation of China 61271157

National Natural Science Foundation of China 61505242

National Natural Science Foundation of China 61401456

National Natural Science Foundation of China 61401297

Natural Science Foundation of Jiangsu Province BK20140283

National Program on Key Basic Research Projects of China G2009CB929303

Knowledge Innovation Program of the Chinese Academy of Sciences KJCX2-EW-705

More Information
  • Corresponding author: QIN Hua, E-mail:hqin2007@sinano.ac.cn
  • Received Date: 12 Sep 2016
  • Rev Recd Date: 11 Oct 2016
  • Publish Date: 01 Feb 2017
  • Solid-state terahertz plasma devices are becoming one of the important research areas in which both solid-state microwave/millimeter-wave electronics and semiconductor laser technologies are being developed and merged towards the terahertz frequency regime. In this review, we introduce the manipulation, excitation and probing of two-dimensional-electron-gas (2DEG) plasmons in AlGaN/GaN heterostructure, and report the recent progresses in the implementation of plasmon physics in terahertz detectors, modulators and emitters. The coupling between the plasmon modes and the terahertz electromagnetic waves in free space are realized by using grating coupler, antenna and terahertz Fabry-Pérot cavity which further modulates the terahertz electromagnetic modes and enhances the coupling. The dispersion relationship of gate-controlled plasmon modes are verified in grating-coupled 2DEG. Strong coupling between the plasmon modes and the terahertz cavity modes and hence the formation of plasmon-polariton modes are realized in a grouping-coupled 2DEG embedded in a Fabry-Pérot cavity. Based on the same grating-coupled 2DEG, terahertz modulation with high modulation depth and terahertz plasmon emission are observed. In antenna-coupled 2DEG field-effect channel, both resonant and non-resonant excitation of localized plasmon modes are observed by probing the terahertz photocurrent/voltage. A terahertz self-mixing model is developed for antenna-coupled field-effect terahertz detector and provides a guideline for the design and optimization of high-sensitivity terahertz detectors. Our studies indicate that room-temperature, high-speed and high-sensitivity terahertz detectors and the focal-plane arrays can be developed by using the non-resonant plasmon excitation in antenna-coupled field-effect channel. However, the high damping rate of solid-state plasma wave is yet the main hurdle to overcome for plasmon terahertz emitters and modulators both of which rely on the resonant plasmon excitation. The formation of high-quality-factor plasmon cavity including the solid-state plasma physics, manipulation of the boundary conditions of plasmon cavity, utilization of new high-electron-mobility two-dimensional electronic materials and high-quality, small-mode-volume terahertz resonant cavity, etc. would be the focus of future research.

     

  • loading
  • [1]
    RADISIC V, LEONG K M K H, MEI X, et al.. Power amplification at 0.65 THz Using InP HEMTs[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3):724-729. doi: 10.1109/TMTT.2011.2176503
    [2]
    LEONG K M K H, MEI X, YOSHIDA W, et al.. A 0.85 THz low noise amplifier using InP HEMT transistors[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(6):397-399. doi: 10.1109/LMWC.2015.2421336
    [3]
    KOHLER R, TREDICUCCI A, BELTRAM F, et al.. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417(6885):156-159. doi: 10.1038/417156a
    [4]
    WILLIAMS B S, KUMAR S, HU Q, et al.. High-power terahertz quantum-cascade lasers[J]. Electronics Letters, 2006, 42(2):89-91. doi: 10.1049/el:20063921
    [5]
    LI L H, CHEN L, ZHU J X, et al.. Terahertz quantum cascade lasers with >1 W output powers[J]. Electronics Letters, 2014, 50(4):309-310. doi: 10.1049/el.2013.4035
    [6]
    ALLEN S J, TSUI D C, LOGAN R A. Observation of the two-dimensional plasmon in silicon inversion layers[J]. Physical Review Letters, 1977, 38(17):980-983. doi: 10.1103/PhysRevLett.38.980
    [7]
    GORNIK E, TSUI D C. Voltage-tunable far-infrared emission from Si inversion layers[J]. Physical Review Letters, 1976, 37(21):1425-1428. doi: 10.1103/PhysRevLett.37.1425
    [8]
    HÖPFEL R A, VASS E, GORNIK E. Thermal excitation of two-dimensional plasma oscillations[J]. Physical Review Letters, 1982, 49(22):1667-1671. doi: 10.1103/PhysRevLett.49.1667
    [9]
    HIRAKAWA K, YAMANAKA K, GRAYSON M, et al.. Far-infrared emission-spectroscopy of hot 2-dimensional plasmons in Al0.3Ga0.7As/GaAs heterojunctions[J]. Applied Physics Letters, 1995, 67(16):2326-2328. doi: 10.1063/1.114333
    [10]
    KEMPA K, BAKSHI P, XIE H, et al.. Current-driven plasma instabilities in solid-state layered systems with a grating[J]. Physical Review B, 1993, 47(8):4532-4536. doi: 10.1103/PhysRevB.47.4532
    [11]
    MIKHAILOV S A. Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems[J]. Physical Review B, 1998, 58(3):1517-1532. doi: 10.1103/PhysRevB.58.1517
    [12]
    DYAKONOV M, SHUR M. Shallow-water analogy for a ballistic field-effect transistor:new mechanism of plasma-wave generation by Dc current[J]. Physical Review Letters, 1993, 71(15):2465-2468. doi: 10.1103/PhysRevLett.71.2465
    [13]
    BOUBANGA-TOMBET S, TEPPE F, TORRES J, et al.. Room temperature coherent and voltage tunable terahertz emission from nanometer-sized field effect transistors[J]. Applied Physics Letters, 2010, 97(26):262108. doi: 10.1063/1.3529464
    [14]
    LISAUSKAS A, PFEIFFER U, OJEFORS E, et al.. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors[J]. J. Applied Physics, 2009, 105(11):114511. doi: 10.1063/1.3140611
    [15]
    KNAP W, DENG Y, RUMYANTSEV S, et al.. Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor[J]. Applied Physics Letters, 2002, 80(18):3433-3435. doi: 10.1063/1.1473685
    [16]
    KNAP W, KACHOROVSKⅡ V, DENG Y, et al. Nonresonant detection of terahertz radiation in field effect transistors[J]. J. Applied Physics, 2002, 91(11):9346-9353. doi: 10.1063/1.1468257
    [17]
    DYAKONOV M I, SHUR M S. Plasma wave electronics:novel terahertz devices using two dimensional electron fluid[J]. IEEE Transactions on Electron Devices, 1996, 43(10):1640-1645. doi: 10.1109/16.536809
    [18]
    ELKHATIB T A, KACHOROVSKⅡ V Y, STILLMAN W J, et al. Terahertz response of field-effect transistors in saturation regime[J]. Applied Physics Letters, 2011, 98(24):243505. doi: 10.1063/1.3584137
    [19]
    GUTIN A, KACHOROVSKⅡ V, MURAVIEV A, et al.. Plasmonic terahertz detector response at high intensities[J]. J. Applied Physics, 2012, 112(1):014508. doi: 10.1063/1.4732138
    [20]
    KNAP W, DYAKONOV M, COQUILLAT D, et al.. Field effect transistors for terahertz detection:physics and first imaging applications[J]. J. Infrared Millimeter and Terahertz Waves, 2009, 30(12):1319-1337.
    [21]
    KACHOROVSKⅡ V Y, RUMYANTSEV S L, KNAP W, et al.. Performance limits for field effect transistors as terahertz detectors[J]. Applied Physics Letters, 2013, 102(22):223505. doi: 10.1063/1.4809672
    [22]
    SHUR M. Terahertz electronics for sensing applications[C]. Sensors, IEEE, Limerick, Ireland, 2011:40-43.
    [23]
    PREU S, LU H, SHERWINM S, et al.. Detection of nanosecond-scale, high power THz pulses with a field effect transistor[J]. Review of Scientific Instruments, 2012, 83(5):053101. doi: 10.1063/1.4705986
    [24]
    BUT D B, DREXLER C, SAKHNO M V, et al.. Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities[J]. J. Applied Physics, 2014, 115(16):164514. doi: 10.1063/1.4872031
    [25]
    DYAKONOVA N, BUT D B, COQUILLAT D, et al.. AlGaN/GaN HEMT's photoresponse to high intensity THz radiation[J]. Opto-Electronics Review, 2015, 23(3):195-199.
    [26]
    STILLMAN W J, SHUR M S. Closing the gap:plasma wave electronic terahertz detectors[J]. J. Nanoelectronics and Optoelectronics, 2007, 2(3):209-221. doi: 10.1166/jno.2007.301
    [27]
    LU J Q, SHUR M S, HESLER J L, et al.. Terahertz detector utilizing two-dimensional electronic fluid[J]. IEEE Electron Device Letters, 1998, 19(10):373-375. doi: 10.1109/55.720190
    [28]
    WEIKLE R, LU J Q, SHUR M S, et al.. Detection of microwave radiation by electronic fluid in high electron mobility transistors[J]. Electronics Letters, 1996, 32(23):2148-2149. doi: 10.1049/el:19961410
    [29]
    KNAP W, DENG Y, RUMYANTSEV S, et al.. Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors[J]. Applied Physics Letters, 2002, 81(24):4637-4639. doi: 10.1063/1.1525851
    [30]
    KANG S, BURKE P J, PFEIFFER L N, et al.. Resonant frequency response of plasma wave detectors[J]. Applied Physics Letters, 2006, 89(21):213512. doi: 10.1063/1.2393023
    [31]
    EL FATIMY A, TEPPE F, DYAKONOVA N, et al.. Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors[J]. Applied Physics Letters, 2006, 89(13):131926. doi: 10.1063/1.2358816
    [32]
    PERALTA X G, ALLEN S J, WANKE M C, et al.. Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors[J]. Applied Physics Letters, 2002, 81(9):1627-1629. doi: 10.1063/1.1497433
    [33]
    EL FATIMY A, TOMBET S B, TEPPE F, et al.. Terahertz detection by GaN/AlGaN transistors[J]. Electronics Letters, 2006, 42(23):1342-1344. doi: 10.1049/el:20062452
    [34]
    GOLENKOV A. Sub-THz nonresonant detection in AlGaN/GaN heterojunction FETs[J]. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2015, 18(1):40-45.
    [35]
    LISAUSKAS A, BOPPEL S, SELIUTA D, et al.. Terahertz detection and coherent imaging from 0.2 to 4.3 THz with silicon CMOS field-effect transistors[C]. Microwave Symposium Digest (MTT), IEEE MTT-S International, Montreal, Canada, 2012:1-3.
    [36]
    BOPPEL S, LISAUSKAS A, MAX A, et al.. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging[J]. Optics Letters, 2012, 37(4):536-538. doi: 10.1364/OL.37.000536
    [37]
    BOPPEL S, LISAUSKAS A, MUNDT M, et al.. CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12):3834-3843. doi: 10.1109/TMTT.2012.2221732
    [38]
    PERENZONI D, PERENZONI M, GONZO L, et al.. Analysis and design of a CMOS-based terahertz sensor and readout[C]. Proceedings of SPIE, Optical Sensing and Detection, Brussels, Belgium, 2010, 7726:772618.
    [39]
    BAUER M, VENCKEVICIUS R, KASALYNAS I, et al.. Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 4.25 THz[J]. Optics Express, 2014, 22(16):19250-19256.
    [40]
    AL HADI R, SHERRY H, GRZYB J, et al.. A 1 k-Pixel Video Camera for 0.7-1.1 Terahertz Imaging Applications in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2012, 47(12):2999-3012. doi: 10.1109/JSSC.2012.2217851
    [41]
    SHERRY H, AL HADI R, GRZYB J, et al.. Lens-integrated THz imaging arrays in 65nm CMOS technologies[C]. Radio Frequency Integrated Circuits Symposium (RFIC), IEEE, Baltimore, MD, USA, 2011:1-4.
    [42]
    TOMADIN A, TREDICUCCI A, PELLEGRINI V, et al.. Photocurrent-based detection of terahertz radiation in graphene[J]. Applied Physics Letters, 2013, 103(21):211120. doi: 10.1063/1.4831682
    [43]
    OTSUJI T, TOMBET S A B, SATOU A, et al.. Graphene-based devices in terahertz science and technology[J]. J. Physics D:Applied Physics, 2012, 45(30):303001. doi: 10.1088/0022-3727/45/30/303001
    [44]
    VICARELLI L, VITIELLO M S, COQUILLAT D, et al.. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 2012, 11(10):865-871. doi: 10.1038/nmat3417
    [45]
    YANG X X, SUN J D, QIN H, et al.. Room-temperature terahertz detection based on CVD graphene transistor[J]. Chinese Physics B, 2015, 24(4):047206. doi: 10.1088/1674-1056/24/4/047206
    [46]
    ZAK A, ANDERSSON M A, BAUER M, et al.. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene[J]. Nano Letters, 2014, 14(10):5834-5838. doi: 10.1021/nl5027309
    [47]
    NAKAMURA S, MUKAI T, SENOH M. High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes[J]. J. Applied Physics, 1994, 76(12):8189-8191. doi: 10.1063/1.357872
    [48]
    NAKAMURA S, SENOH N, IWASA N, et al.. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures[J]. Japanese J. Applied Physics, 1995, 34(7A):L797-L799.
    [49]
    AMBACHER O. Growth and applications of Group Ⅲ-nitrides[J]. J. Physics D:Applied Physics, 1998, 31(20):2653-2710. doi: 10.1088/0022-3727/31/20/001
    [50]
    QIN H, YU Y, LI X, et al.. Excitation of terahertz plasmon in two-dimensional electron gas[J]. Terahertz Science and Technology, 2016, 9(2):71-81.
    [51]
    TAN R B.Theoretical study on two-dimensional electron gas based terahertz device[D]. Beijing:University of Chinese Academy of Sciences 2013.(in Chinese)
    [52]
    STERN F. Polarizability of a two-dimensional electron gas[J]. Physical Review Letters, 1967, 18(14):546-548. doi: 10.1103/PhysRevLett.18.546
    [53]
    CHAPLIK A V. Possible crystallization of charge carriers in low-density inversion layers[J]. Soviet J. Experimental and Theoretical Physics, 1972, 35(2):395-398.
    [54]
    SHUR M. Plasma wave terahertz electronics[J]. Electronics Letters, 2010, 46(26):S18-S21. doi: 10.1049/el.2010.8457
    [55]
    SHANER E A, GRINE A D, WANKE M C, et al.. Far-infrared spectrum analysis using plasmon modes in a quantum-well transistor[J]. IEEE Photonics Technology Letters, 2006, 18(17-20):1925-1927.
    [56]
    SUN J D, SUN Y F, WU D M, et al. High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor[J]. Applied Physics Letters, 2012, 100(1):013506. doi: 10.1063/1.3673617
    [57]
    DYER G C, VINH N Q, ALLEN S J, et al.. A terahertz plasmon cavity detector[J]. Applied Physics Letters, 2010, 97(19):193507. doi: 10.1063/1.3513339
    [58]
    AIZIN G R, DYER G C. Transmission line theory of collective plasma excitations in periodic two-dimensional electron systems:Finite plasmonic crystals and Tamm states[J]. Physical Review B, 2012, 86(23):235316. doi: 10.1103/PhysRevB.86.235316
    [59]
    HUANG Y D.Manipulation of the interaction between two-dimensional plasma waves and terahertz electromagnetic waves[D]. Beijing:University of Chinese Academy of Sciences, 2013.(in Chinese)
    [60]
    SUN J D, QIN H, LEWIS R A, et al. Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector[J]. Applied Physics Letters, 2012, 100(17):173513. doi: 10.1063/1.4705306
    [61]
    SUN J D, QIN H, LEWIS R A, et al.. The effect of symmetry on resonant and nonresonant photoresponses in a field-effect terahertz detector[J]. Applied Physics Letters, 2015, 106(3):031119. doi: 10.1063/1.4906536
    [62]
    TEPPE F, KNAP W, VEKSLER D, et al.. Room-temperature plasma waves resonant detection of sub-terahertz radiation by nanometer field-effect transistor[J]. Applied Physics Letters, 2005, 87(5):052107. doi: 10.1063/1.2005394
    [63]
    TEPPE F, VEKSLER D, KACHOROVSKI V Y, et al. Plasma wave resonant detection of femtosecond pulsed terahertz radiation by a nanometer field-effect transistor[J]. Applied Physics Letters, 2005, 87(2):022102. doi: 10.1063/1.1952578
    [64]
    SUN Y F, SUN J D, ZHOU Y, et al.. Room temperature GaN/AlGaN self-mixing terahertz detector enhanced by resonant antennas[J]. Applied Physics Letters, 2011, 98(25):252103. doi: 10.1063/1.3601489
    [65]
    LIU L, HESLER J L, XU H Y, et al.. A broadband quasi-optical terahertz detector utilizing a zero bias schottky diode[J]. IEEE Microwave and Wireless Components Letters, 2010, 20(9):504-506. doi: 10.1109/LMWC.2010.2055553
    [66]
    SEMENOV A D, RICHTER H, HUBERS H W, et al. Terahertz performance of integrated lens antennas with a hot-electron bolometer[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(2):239-247. doi: 10.1109/TMTT.2006.889153
    [67]
    DYER G C, PREU S, AIZIN G R, et al.. Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity[J]. Applied Physics Letters, 2012, 100(8):083506. doi: 10.1063/1.3687698
    [68]
    李琦, 胡佳琦, 杨永发.太赫兹Gabor同轴数字全息二维再现像复原[J].光学精密工程, 2014, 22(8):2188-2195. doi: 10.3788/OPE.

    LI Q, HU J Q, YANG Y F. 2D reconstructed-image restoration of terahertz Gabor in-line digital holography[J]. Opt. Precision Eng., 2014, 22(8):2188-2195.(in Chinese) doi: 10.3788/OPE.
    [69]
    田莉, 金伟其, 蔡毅, 等.THz焦平面连续波透射成像系统的成像面积及对比度[J].光学精密工程, 2015, 23(8):2164-2170. doi: 10.3788/OPE.

    TIAN L, JIN W Q, CAI Y, et al.. Imaging area and contrast of THz focal plan array CW transmission imaging system[J]. Opt. Precision Eng., 2015, 23(8):2164-2170.(in Chinese) doi: 10.3788/OPE.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article views(2896) PDF downloads(765) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return