Volume 10 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
ZHANG Lei, LIU Shuo, CUI Tie-jun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1-12. doi: 10.3788/CO.20171001.0001
Citation: ZHANG Lei, LIU Shuo, CUI Tie-jun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1-12. doi: 10.3788/CO.20171001.0001

Theory and application of coding metamaterials

doi: 10.3788/CO.20171001.0001

National Natural Science Foundation of China 61571117

More Information
  • Corresponding author: CUI Tie-jun, E-mail:tjcui@seu.edu.cn
  • Received Date: 14 Sep 2016
  • Rev Recd Date: 27 Sep 2016
  • Publish Date: 01 Feb 2017
  • In this paper, we review the recent progress on coding metamaterial, digital metamaterial and programmable metamaterial, and discuss their capacities in manipulating the electromagnetic (EM) waves in real time and constructing the multi-functional devices. First, we present 1-bit coding metamaterials that are composed of only two types of unit cells with 0 and π phase responses, named as '0' and '1' elements, respectively. By encoding '0' and '1' elements with controlled sequences, we can manipulate EM waves and realize different functionalities. The concept of coding metamaterials can be extended from 1-bit coding to 2-bit coding or higher. Second, we introduce a unique metamaterial particle that has either 0' or 1' response electrically controlled by a biased diode. Based on this particle, we present digital metamaterials with unit cells that possess either 0' or 1' state. Using a field-programmable gate array (FPGA), we realize the digital controls over the coding metamaterial, thereby realizing a programmable metamaterial. Finally, we study the manipulations to terahertz waves using the coding metamaterial, such as to produce wideband diffusions of terahertz waves, achieving the efficient reductions of radar cross sections (RCSs), as well as to propose anisotropic coding metamaterials, realizing distinct coding behaviors for different polarizations. The measured results are in good agreements with the simulated results, demonstrating the powerful abilities of coding metamaterials to control EM waves. The property of coding metamaterials to manipulate EM waves can be used for designing beam splitter, realizing anomalous reflections and polarization conversions, and reducing RCSs of metallic objects in wide frequency bands.


  • loading
  • [1]
    CUI T J, SMITH D R, LIU R. Metamaterials:Theory, Design, and Applications[M]. New York:Springer Science & Business Media, 2009.
    VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10:509-514. doi: 10.1070/PU1968v010n04ABEH003699
    SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292:77-79. doi: 10.1126/science.1058847
    PENDRY J B. Negative refraction makes a perfect lens[J]. Physics Review Letter, 2000, 85:3966-3969. doi: 10.1103/PhysRevLett.85.3966
    ENOCH S, TAYEB G, SABOUROUX P, et al.. A metamaterial for directive emission[J]. Physics Review Letter, 2002, 89:213902. doi: 10.1103/PhysRevLett.89.213902
    SILVEIRINHA M, ENGHETA N. Tunneling of Electromagnetic energy through subwavelength channels and bends using-near-zero materials[J]. Physics Review Letter, 2006, 97:157403. doi: 10.1103/PhysRevLett.97.157403
    LIU R, CHENG Q, HAND T, et al.. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies[J]. Physics Review Letter, 2008, 100:023903. doi: 10.1103/PhysRevLett.100.023903
    ZHANG B, LUO Y, LIU X, et al.. Macroscopic invisibility cloak for visible light[J]. Physics Review Letter, 2011; 106:033901. doi: 10.1103/PhysRevLett.106.033901
    CHEN X, LUO Y, ZHANG J, et al.. Macroscopic invisibility cloaking of visible light[J]. Nature Communication, 2011, 2:176. doi: 10.1038/ncomms1176
    CHENG Q, JIANG W X, CUI T J. Spatial power combination for omnidirectional radiation via anisotropic metamaterials[J]. Physics Review Letter, 2012, 108:213903. doi: 10.1103/PhysRevLett.108.213903
    BLANCO A, CHOMSKI E, GRABTCHAK S, et al.. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres[J]. Nature, 2000, 405:437-440. doi: 10.1038/35013024
    SAKODA K. Optical Properties of Photonic Crystals[M]. New York:Springer Science & Business Media, 2005.
    PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312:1780-1782. doi: 10.1126/science.1125907
    LEONHARDT U. Optical conformal mapping[J]. Science, 2006, 312:1777-1780. doi: 10.1126/science.1126493
    SCHURIG D, MOCK J J, JUSTICE B J, et al.. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314:977-980. doi: 10.1126/science.1133628
    LI J, PENDRY J B. Hiding under the carpet:a new strategy for cloaking[J]. Physics Review Letter, 2008, 101:203901. doi: 10.1103/PhysRevLett.101.203901
    LIU R, JI C, MOCK J J, et al.. Broadband ground-plane cloak[J]. Science, 2009, 323:366-369. doi: 10.1126/science.1166949
    ERGIN T, STENGER N, BRENNER P, et al.. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328:337-339. doi: 10.1126/science.1186351
    MA H F, CUI T J. Three-dimensional broadband ground-plane cloakmade of metamaterials[J]. Nature Communication, 2010, 1:21.
    JIANG W X, CUI T J, CHENG Q, et al.. Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces[J]. Applied Physics Letter, 2008, 92:264101. doi: 10.1063/1.2951485
    LAI Y, NG J, CHEN H, et al.. Illusion optics:the optical transformation of an object into another object[J]. Physics Review Letter, 2009, 102:253902. doi: 10.1103/PhysRevLett.102.253902
    JIANG W X, CUI T J, YANG X M, et al.. Shrinking an arbitrary object as one desires using metamaterials[J]. Applied Physics Letter, 2011, 98:204101. doi: 10.1063/1.3590203
    KUNDTZ N, SMITH D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 2010, 9:129132.
    MA H F, CUI T J. Three-dimensional broadband ground-plane cloakmade of metamaterials[J]. Nature Communication, 2010, 1:21.
    SMITH D R, MOCK J J, STARR A F, et al.. Gradient index metamaterials[J]. Physics Review E, 2005, 71:036609. doi: 10.1103/PhysRevE.71.036609
    HAO Y, MITTRA R. FDTD Modeling of Metamaterials:Theory and Applications[M]. Boston:Artech House, 2009.
    CHEN X, M A HF, ZOU X Y, et al.. Three-dimensional broadband and highdirectivity lens antenna made of metamaterials[J]. J. Applied Physics, 2011, 110:044904. doi: 10.1063/1.3622596
    LIER E, WERNER D H, SCARBOROUGH C P, et al.. An octave-bandwidth negligible-loss radiofrequency metamaterial[J]. Nature Materials, 2011, 10:216-222. doi: 10.1038/nmat2950
    JIANG W X, QIU C W, HAN T C, et al.. Broadband all-dielectric magnifying lens for far-field high-resolution imaging[J]. Advanced Materials, 2013, 25:6963-6968. doi: 10.1002/adma.v25.48
    YANG X M, ZHOU X Y, CHENG Q, et al.. Diffuse reflections by randomly gradient index metamaterials[J]. Optics Letter, 2010, 35:808-810. doi: 10.1364/OL.35.000808
    SILVA A, MONTICONE F, CASTALDI G, et al.. Performing mathematical operations with metamaterials[J]. Science, 2014, 343:160-163. doi: 10.1126/science.1242818
    YU N, GENEVET P, KATS M A, et al.. Light propagation with phasediscontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334:333-337. doi: 10.1126/science.1210713
    NI X, EMANI N K, KILDISHEV A V, et al.. Broadband light bending with plasmonicnanoantennas[J]. Science, 2012, 335:427. doi: 10.1126/science.1214686
    SUN S, HE Q, XIAO S, et al.. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11:426-431. doi: 10.1038/nmat3292
    YIN X, YE Z, RHO J, et al.. Photonic spin hall effect at metasurfaces[J]. Science, 2013, 339:1405-1407. doi: 10.1126/science.1231758
    LIN J, MUELLER J P, WANG Q, et al.. Polarization-controlled tunable directional coupling of surface plasmonpolaritons[J]. Science, 2013, 340:331-334. doi: 10.1126/science.1233746
    MIROSHNICHENKO A E, KIVSHAR Y S. Polarization traffic control for surface plasmons[J]. Science, 2013, 340:283-284. doi: 10.1126/science.1236154
    GRADY N K, HEYES J E, CHOWDHURY D R, et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340:1304-1307. doi: 10.1126/science.1235399
    QU C, MA S J, HAO J M, et al.. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters, 2015, 115(23):235503. doi: 10.1103/PhysRevLett.115.235503
    CUI T J, QI M Q, WAN X, et al.. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science & Application, 2014, 3:e218.
    ZHU B O, ZHAO J M, FENG Y J. Active impedance metasurface with full 360 reflection phase tuning[J]. Scientific Reports, 2013, 3:3059.
    MIAO Z, WU Q, LI X, et al.. Widely tunable terahertz phase modulation with gate-controlled graphenemetasurfaces[J]. Physical Review X, 2015, 5(4):041027. doi: 10.1103/PhysRevX.5.041027
    WAN X, QI M Q, CHEN T Y, et al.. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface[J]. Scientific Reports, 2016, 6:20663. doi: 10.1038/srep20663
    XU H X, SUN S, TANG S, et al.. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J]. Scientific Reports, 2016, 6:27503. doi: 10.1038/srep27503
    GIOVAMPAOLA C D, ENGHETA N. Digital metamaterials[J]. Nature Materials, 2014, 14:1115-1121.
    GAO L H, CHENG Q, YANG J, et al.. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light:Science & Application, 2015, 4:e324.
    LIU S, CUI T J, XU Q, et al.. Anisotropic coding metamaterials and their powerful manipulation to differently polarized terahertz waves[J]. Light:Science & Application, 2015, 5:e16076.
    PAQUAY M, IRIARTE JC, EDERRA I, et al.. Thin AMC structure for radar cross-section reduction[J]. IEEE Transactions on Antennas and Propagation, 2007, 55:3630-3638. doi: 10.1109/TAP.2007.910306
    MAIT J N. Design of binary-phase and multiphase Fourier gratings for array generation[J]. J. Optical Society of America A, 1990, 7:1514-1528. doi: 10.1364/JOSAA.7.001514
    WANG M R, SU H. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication[J]. Applied Optics, 1998, 37:7568-7576. doi: 10.1364/AO.37.007568
    COOMBER S D, CAMERON C D, HUGHES J R, et al.. Optically addressed spatial light modulators for replaying computer-generated holograms[J]. Proc SPIE, 2001, 4457:9-19. doi: 10.1117/12.447756
    WATTS C M, SHREKENHAMER D, MONTOYA J, et al.. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8(8):605-609. doi: 10.1038/nphoton.2014.139
    SHREKENHAMER D, MONTOYA J, KRISHNA S, et al.. Four-color metamaterial absorber THz spatial light modulator[J]. Advanced Optical Materials, 2013, 1(12):905-909. doi: 10.1002/adom.v1.12
    SAVO S, SHREKENHAMER D, PADILLA W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications[J]. Advanced Optical Materials, 2014, 2:275-279. doi: 10.1002/adom.v2.3
    CHAN W L, CHEN H T, TAYLOR A J, et al.. A spatial light modulator for terahertz beams[J]. Applied Physics Letter, 2009, 94:213511. doi: 10.1063/1.3147221
    KARL N, REICHEL K, CHEN H T, et al.. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range[J]. Applied Physics Letter, 2014, 104:091115. doi: 10.1063/1.4867276
    MAXFIELD C. The Design Warrior's Guide to FPGAs:Devices, Tools and Flows[M]. Oxford:Elsevier, 2004.
    LANDY N I, SAJUYIGBE S, MOCK J J, et al.. Perfect metamaterial absorber[J]. Physics Review Letter, 2008, 100:207402. doi: 10.1103/PhysRevLett.100.207402
    CHEN H T, ZHOU J, O'HARA J F, et al.. Antireflection coating using metamaterials and identification of its mechanism[J]. Physics Review Letter, 2010, 105:073901. doi: 10.1103/PhysRevLett.105.073901
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(3039) PDF downloads(1476) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint