Volume 9 Issue 4
Jul.  2016
Turn off MathJax
Article Contents
HAMAROVÁ Ivana, ŠMÍD Petr, HORVÁTH Pavel. Design of a model for shape from focus method[J]. Chinese Optics, 2016, 9(4): 439-451. doi: 10.3788/CO.20160904.0439
Citation: HAMAROVÁ Ivana, ŠMÍD Petr, HORVÁTH Pavel. Design of a model for shape from focus method[J]. Chinese Optics, 2016, 9(4): 439-451. doi: 10.3788/CO.20160904.0439

Design of a model for shape from focus method

doi: 10.3788/CO.20160904.0439
Funds:

the grant of the Czech Science Foundation No.13-12301S

More Information
  • Corresponding author: Ivana Hamarová (1982—) , Ph.D., Institute of Physics of the Czech Academy of Sciences, Joint Laboratory of Optics of Palacky University and Institute of Physics AS CR. Her research interests are on numerical modeling and simulation of the optical fields and the proposal of the optical measuring sensors. E-mail:ivana.hamarova@upol.cz
  • Received Date: 14 Mar 2016
  • Rev Recd Date: 29 Apr 2016
  • Publish Date: 01 Aug 2016
  • We propose a numerical model for simulation of an object depth measurement by means of a shape from focus method using Laplacian operator. The core of the simulation is based on convolution of an ideal image (predicted by the geometrical optics) with polychromatic point spread functions of a generalized aperture function of lens including focus error instead of more exploited the pillbox shape or the Gaussian functions. The model allows to employ parameters of real components of the sensor based on the method, a light source spectrum, dispersion of an optical system and spectral sensitivity of a camera. The influence of dispersion of optical systems (aberration-free, achromatic and with chromatic aberration) on accuracy and reliability of the determination of the object's surface topography is presented. It is indicated that this model can increase the experiment effectively and decrease time lag with the reducing of operating expenses.

     

  • loading
  • [1]
    NAYAR S K,NAKAGAWA Y. Shape from focus[J]. IEEE,1994,16 (8) :824-831.
    [2]
    PERTUZ S,PUIG D,GARCIA M A. Reliability measure for shape from focus[J]. Image Vis. Comput.,2013,31 (10) :725-734.
    [3]
    MAHMOOD M T,SHIM S,CHOI T S. Depth and image focus enhancement for digital cameras[C]. IEEE 15th International Symposium on Consumer Electronics,Singapore,2011:50-53.
    [4]
    PERTUZ S,PUIG D,GARCIA M A. Analysis of focus measure operators for shape from focus[J]. Pattern Recognit.,2013,46 (5) :1415-1432.
    [5]
    SUBBARAO M. Direct recovery of depth-map I:differential methods[C]. IEEE Computer Society Workshop on Computer Vision,Miami Beach,Florida,USA,1987:58-65.
    [6]
    RAVIKUMAR S,THIBOS L N,BRADLEY A. Calculation of retinal image quality for polychromatic light[J]. J. Opt Soc. Am. A,2008,25 (10) :2395-2407.
    [7]
    CLAXTON C D,STAUNTON R C. Measurement of the point-spread function of a noisy imaging system[J]. J. Opt. Soc. Am. A,2008,25 (1) :159-170.
    [8]
    TAKEDA M. Chromatic aberration matching of the polychromatic optical transfer function[J]. Appl. Opt.,1981,20 (4) :684-687.
    [9]
    MANDAL S. A novel technique for evaluating the polychromatic optical transfer function of defocused optical imaging systems[J]. Optik,2013,124 (17) :2627-2629.
    [10]
    BARNDEN R. Calculation of axial polychromatic optical transfer function[J]. Opt. Acta,1974,21 (12) :981-1003.
    [11]
    SUBBARAO M,LU M-C. Computer modeling and simulation of camera defocus[C]. Conference on Optics, Illumination, and Image Sensing for Machine Vision VII, Boston, Massachusetts,USA,1992,Proc. SPIE,1993,1822:110-120.
    [12]
    MOELLER M,BENNING M,SCHÖNLIEB C,CREMERS D. Variational Depth from Focus Reconstruction[J]. IEEE,2015,24 (12) :5369-5378.
    [13]
    SALEH B E A,TEICH M C. Fundamentals of Photonics[M]. New York:John Wiley & Sons,1991.
    [14]
    GOODMAN J W. Introduction to Fourier Optics[M]. New York:McGraw-Hill Book Co.,1968.
    [15]
    ATIF M. Optimal depth estimation and extended depth of field from single images by computational imaging using chromatic aberrations[D]. Heidelberg:Ruperto Carola Heidelberg University,2013.
    [16]
    HADJ S B,BLANC-FÉRAUD L. Modeling and removing depth variant blur in 3D fluorescence microscopy[C]. IEEE International Conference on Acoustics,Speech and Signal Processing,Kyoto,Japan,2012:689-692.
    [17]
    BARSKY B A,TOBIAS M J,CHU D-P,et al.. Elimination of artifacts due to occlusion and discretization problems in image space blurring techniques[J]. Graph. Models,2005,67 (6) :584-599.
    [18]
    ZHANG L,NAYAR S. Projection defocus analysis for scene capture and image display[J]. ACM Trans. Graph.,2006,25 (3) :907-915.
    [19]
    FURLAN W D,SAAVEDRA G,SILVESTRE E,et al.. Polychromatic axial behavior of aberrated optical systems:Wigner distribution function approach[J]. Appl. Opt.,1997,36 (35) :9146-9151.
    [20]
    CMOS Camera DCC1545M[EB/OL]. [2016-01-07].http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=4024/.
    [21]
    Relative spectral power distribution of CIE Standard Illuminant D65[EB/OL]. [2016-01-07].http://files.cie.co.at/204.xls/.
    [22]
    Dispersion formula of glass N-BK7[EB/OL]. [2016-01-07].http://refractiveindex.info/?shelf=glass &book=BK7 & page=SCHOTT.
    [23]
    Mounted Achromatic Doublet AC127-075-A-ML[EB/OL]. [2016-01-07]. https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=2696.
    [24]
    MADOU M J. Manufacturing Techniques for Microfabrication and Nanotechnology[M]. Boca Raton,Florida:CRC Press-Taylor & Francis Group,2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(1602) PDF downloads(847) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return