Volume 7 Issue 5
Sep.  2014
Turn off MathJax
Article Contents
WU Xiao-ye, ZHANG Li-chao, SHI Guang. Optical-thermal and optical-acoustics detecting techniques applied for the characterizations of high performance optical thin films[J]. Chinese Optics, 2014, 7(5): 701-711. doi: 10.3788/CO.20140705.0701
Citation: WU Xiao-ye, ZHANG Li-chao, SHI Guang. Optical-thermal and optical-acoustics detecting techniques applied for the characterizations of high performance optical thin films[J]. Chinese Optics, 2014, 7(5): 701-711. doi: 10.3788/CO.20140705.0701

Optical-thermal and optical-acoustics detecting techniques applied for the characterizations of high performance optical thin films

doi: 10.3788/CO.20140705.0701
  • Received Date: 12 Jun 2014
  • Rev Recd Date: 15 Aug 2014
  • Publish Date: 25 Sep 2014
  • In this paper, the basic principle of the optical-thermal and optical-acoustics detecting methods is reviewed. The common optical-thermal and optical-acoustics detecting methods are described. Combined with specific applications such as absorption test of optical films, characterization of laser irradiation and laser damage to the thin films and characterization of the mechanical properties of thin films, some typical detecting methods are analyzed including laser calorimetry technique, photothermal deflection technique, surface acoustic waves and so on. The advantages and disadvantages of these methods are indicated. Finally, some achievement in the field by these methods are summarized, and the prospect of these methods is presented.

     

  • loading
  • [1] 范正修, 魏朝阳. 高功率激光系统中光学薄膜的现状及发展趋势[J]. 激光与光电子学进展, 2009, 7:14-17. FAN ZH X, WEI ZH Y. Progress and development trends of optical coatings in high power laser[J]. Laser & Optoelectronics Progress, 2009, 7:14-17.(in Chinese)
    [2] DAVIEST S J, EDWARDS C, TAYLOR G S, et al. Laser-generation ultrasound:its properties mechanisms and multifarious applications[J]. Appl. Phys., 1993, 26:329-348.
    [3] ROGERS J A, MAZNEV A A, BANET M J, et al. Optical generation and characterization of acoustic waves in thin films:fundamentals and applications[J]. Annual Review Materials Science, 2000, 30:117-157.
    [4] SHEN Z H, ZHANG S Y. Laser-induced displacement fields in a film-substrate system[J]. Progress Natural Science, 2001, 11:299-302.
    [5] ZHANG F F, XU W H, HONG Y, et al.Non-destructive characterization of laminated composite films by laser ultrasonic technique[J]. Analytical Sciences, 2001, 17:208-211.
    [6] WELSCH E, RISTAU D. Photothermal measurement on optical thin films[J]. Applied Optics, 1995, 34(31):7239-7253.
    [7] 陈习权, 祖小涛, 郑万国. 表面热透镜技术测试光学薄膜特性研究[J]. 光学与光电技术, 2005, 3(1):53-57. CHEN X Q, ZU X T, ZHENG W G. Application research of STL technique in photoelectric testing of thin film characterization[J]. Optics & Optoelectronic Technology, 2005, 3(1):53-57.(in Chinese)
    [8] 刘鹏程, 沈剑锋, 施柏煊. 透射式光热偏转技术实验装置的建立及应用[J]. 光学仪器, 2002, 24(4-5):73-77. LIU P CH, SHEN J F, SHI B X. The experimental setup's establishment and application for transmission photothermal def lection technique[J]. Optical Instruments, 2002, 24(4-5):73-77.(in Chinese)
    [9] MANN K, BAYER A, GLOGER J, et al. Photo-thermal measurement of absorption and wave front deformations in fused silica[J]. SPIE, 2008, 7132:71321F.
    [10] PINNOW D A, RICH T C. Development of a calorimetric method for making precision optical absorption measurements[J]. Appl. Opt., 1973, 12(5):984-992.
    [11] 唐晋发, 顾培夫, 刘旭, 等.现代光学薄膜技术[M].杭州:浙江大学出版社, 2006. TANG J F, GU P F, LIU X, et al. Modern Optical Thin Film Technology[M]. Hangzhou:Zhejiang University Press, 2006.(in Chinese)
    [12] ARENBERG J W. An error analysis of ISO 11551[J]. SPIE, 2000, 3902:324-331.
    [13] MANN K, ECKERT G, GOERLING C, et al. Characterization of DUV and VUV optical components[J]. SPIE, 2002, 4691:1742-1752.
    [14] WU Z L, KUO P K, LU Y S, et al. Laser-induced surface thermal lensing for thin film characterizations[J]. SPIE, 1996, 2714:294.
    [15] DIJON J E, VAN OOST, PELL C, et al. Laser induced absorption at 355nm in silic studied by calorimetry and photothermal deflection[J]. SPIE, 1996, 2714:61.
    [16] 范树海, 贺洪波, 邵建达, 等. 表面热透镜薄膜吸收测量灵敏度提高方法[J]. 物理学报, 2006, 55(2):758-763. FAN SH H, HE H B, SHAO J D, et al. Method to improve absorption measurement sensitivity of thin films with surface thermal lens technique[J]. Acta Physica Sinica, 2006, 55(2):758-763.(in Chinese)
    [17] 黄祖鑫, 赵建林, 胡晓阳, 等. 光学薄膜弱吸收测试装置参数优化[J]. 红外与激光工程, 2011, 40(9):1779-1783. HUANG Z X, ZHAO J L, HU X Y, et al. Parameters optimized for optical thin film weak absorption testing set-up[J]. Infrared and Laser Engineering, 2011, 40(9):1779-1783.(in Chinese)
    [18] 李绪平, 蒋晓东, 郑万国, 等. 透射式光热透镜技术的原理和应用[J]. 光学仪器, 2008, 30(1):34-39. LI X P, JIANG X D, ZHENG W G, et al. The principle and application for transmission photo-thermal lens technique[J]. Optical Instruments, 2008, 30(1):34-39.(in Chinese)
    [19] BOCCARA C, FOURNIER D. Thermo-optical spectroscopy:detection by the "mirage effect"[J]. Appl. Phys. Lett., 1979(36):130.
    [20] M HLIG C, BUBLITZ S, PAA W. Laser Induced Deflection(LID) method for absolute absorption measurements of optical materials and thin films[J]. SPIE, 2011, 8082:808225.
    [21] M HLIG CH., TRIEBEL W, KUFERT S, et al. Characterization of low losses in optical thin films and Materials[J]. Appl. Opt., 2008, 47:135-142.
    [22] 邵庆. 用光热偏转法研究光学薄膜的弱吸收特性[D].杭州:浙江大学, 1992. SHAO Q. Study on optical thin film weak absorption by photothermal deflection technique[D]. Hangzhou:Zhejiang University, 1992.(in Chinese)
    [23] STARKE K, JUPE M, RISTAU D, et al. Non-linear absorptance of optical parametric amplified ultrashort pulses in dielectric coating materials[J]. SPIE, 2005, 5647:524.
    [24] BLASCHKE H, RISTAU D, WELSCH E, et al. Absolute Measurements of non-linear Absorption near LIDT at 193 nm[J]. SPIE, 2001, 4347:447.
    [25] APEL O, MANN K, MAROWSKY G. Nonlinear thickness dependence of two-photon absorptance in Al2O3 films[J]. Applied Physics, 2000, A71:593-596.
    [26] APEL O, MANN K, ZOELLER A, et al. Nonlinear absorption of thin Al2O3 films at 193 nm[J]. Applied Optics, 2000, 39(18):3165-3169.
    [27] LIU W J, LI B CH. Repetition rate dependence of absorption of fused silica irradiated at 193 nm[J]. COL, 2013, 11(5): 053002.
    [28] NATURA U, MARTIN R, VON DER G G, et al. Kinetics of laser induced changes of characteristic optical properties in lithosil with 193 nm excimer laser exposure[J]. SPIE, 2005, 5754:1312-1319.
    [29] BALASA I, BLASCHKE H, JENSEN L, et al. Impact of SiO2 and CaF2 surface composition on the absolute absorption at 193 nm[J]. SPIE, 2011, 8190:81901T.
    [30] MUHLIG CH, KUFERT S, TRIEBEL W, et al. Simultaneous measurement of bulk absorption and fluorescence in fused silica upon ArFlaer irradiation[J]. SPIE, 2002, 4779:107-116.
    [31] STEWART A F, GUENTHER A H. Laser damage test results on Blazers round-robin thin film samples[J]. Appl. Opt., 1984, 23(21):3774-3778.
    [32] FOLTYN S R. Spot size effects in laser damage testing[J]. Spec. Publ., 1984, 669:368-379.
    [33] BENNETT H E, GLASS A J, GUENTHER A H, et al. Laser induced damage in optical materials: eleventh ASTM symposium[J]. Appl. Opt., 1980, 19(14):2375-2375.
    [34] 黄伟, 张云洞. 连续波强激光辐照下光学薄膜元件损伤机理和热畸变研究[J]. 光学 精密工程, 1996, 4(5):61-66. HUANG W, ZHANG Y D. Study of the damage mechanism and thermal distortion of optical coating components under CW high power laser radiation[J]. Opt. Precision Eng., 1996, 4(5):61-66.(in Chinese)
    [35] 徐俊海, 赵元安, 邵建达, 等. 不同工艺条件下TiO2单层膜的吸收和损伤阈值测试[J]. 中国激光, 2012, 39(4):0407001-1-5. XU J H, ZHAO Y A, SHAO J D, et al. Absorption and laser induced damage threshold of TiO2 single films under different process conditions[J]. Chinese J. Laser, 2012, 39(4):0407001-1-5.(in Chinese)
    [36] 赵灵, 武潇野, 谷永强, 等. 激光量热法测量深紫外氟化物薄膜吸收[J]. 中国激光, 2014, 已收录. ZHAO L, WU X Y, GU Y Q, et al.Measuring the absorptance of DUV fluoride coatings with Laser Calorimetry[J]. Chinese J. Laser, 2014, received.
    [37] ZHANG L CH, CAI X K. High performance fluoride optical coatings for DUV optics[J]. SPIE, 2014, received.
    [38] BERGER L M, SCHNEIDER D, BARBOSA M, et al.Laser acoustic surface waves for the non-destructive characterisation of thermally sprayed coatings[J]. Thermal Spray Bulletin, 2012, 1:56-64.
    [39] DOXBECK M, HUSSAIN M A, FRANKEL J. Use of laser generated creeping longitudinal waves to determine residual stresses[J]. IEEE Ultrasonics Symposium, 2000:725-728.
    [40] 丁毅. 激光薄膜损伤的声学判别方法研究[D].西安:西安工业大学, 2012. DING Y. Study on Acoustic identification method of laser damage in thin films[D]. Xi'an:Xi'an Technological University, 2012.(in Chinese)
    [41] 林悦波. 激光光声法测量红外光窗材料吸收系数的研究[J]. 激光杂志, 1996, 17(4):177-184. LIN Y B. Research on measuring the coefficients of infrared window material by laser photoacoustic technique[J]. Laser J., 1996, 17(4):177-184.(in Chinese)
    [42] KHAN A, PHILIP J, HESS P. Young's modulus of silicon nitride used in scanning force microscope cantilevers[J]. Applied Physics, 2004, 95(4):1667-1672.
    [43] JIANG X, PHILIP J, ZHANG W J, et al. Hardness and Young's modulus of high-quality cubic boron nitride films grown by chemical vapor deposition[J]. Applied Physics, 2003, 93(3):1515-1519.
    [44] 徐晓东, 张淑仪, 张飞飞, 等. 利用光差分技术检测激光激发声表面波定证薄膜材料[J]. 声学学报, 2003, 28(3):201-206. XU X D, ZHANG SH Y, ZHANG F F, et al. Characterizing of thin film materials by optical difference detection of laser generated SAW[J]. Acta Acustica, 2003, 28(3):201-206.(in Chinese)
    [45] 金宝引. 激光声表面波系统及其在薄膜杨氏模量测量中的应用研究[D].天津:天津大学, 2011. JIN B Y. Study on the measurement of thin film's Young's modulus using LG/LD surface acoustic waves[D]. Tianjin:Tianjin University, 2011.(in Chinese)
    [46] 巩岩, 张巍. 193 nm光刻曝光系统的现状及发展[J]. 中国光学与应用光学, 2008, 1(1):25-35. GONG Y, ZHANG W. Present status and progress in 193 nm exposure system in lithography[J]. Chinese J. Optics and Applied Optics, 2008, 1(1):25-35.(in Chinese)
    [47] 张立超, 高劲松. 长春光机所深紫外光学薄膜技术研究进展[J]. 光学 精密工程, 2012, 20(11):2396-2401. ZHANG L CH, GAO J S. Developments of DUV coating technologies in CIOMP[J]. Opt. Precision Eng., 2012, 20(11):2396-2401.(in Chinese)
    [48] CHEN J Q, LEE C J, LOUIS E, et al. Characterization of EUV induced carbon films using laser-generated surface acoustic waves[J]. Diamond & Related Materials, 2009, 18:768-771.
    [49] SCHNEIDER D, SCHWARZ T. A photoacoustic method for characterizing thin films[J]. Surface and Coatings Technology, 1997, 91:136-146.
    [50] HIRAO M, FUKUOKA H, HORI K. Acoustoclastic effect of Rayleigh surface wave in isotropic materials[J]. Applied Mechanics, 1981(48):119-124.
    [51] KROMINE A K, FOMITCHOV P A, KRISHNASWAMY S, et al. Applications of scanning laser source technique for detection of surface-breaking defects[J]. SPIE, 2000, 4076:252-259.
    [52] SOHN Y, KRISHNASWAMY S. Mass spring lattice modeling of the scanning laser source technique[J]. Ultrasonics, 2002, 39(8):543-551.

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1695) PDF downloads(774) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return