Volume 7 Issue 4
Aug.  2014
Turn off MathJax
Article Contents
HONG Kuo-bin, YANG Chun-chieh, LU Tien-chang. Blue-Violet GaN-based photonic crystal surface emitting lasers[J]. Chinese Optics, 2014, 7(4): 559-571. doi: 10.3788/CO.20140704.0559
Citation: HONG Kuo-bin, YANG Chun-chieh, LU Tien-chang. Blue-Violet GaN-based photonic crystal surface emitting lasers[J]. Chinese Optics, 2014, 7(4): 559-571. doi: 10.3788/CO.20140704.0559

Blue-Violet GaN-based photonic crystal surface emitting lasers

doi: 10.3788/CO.20140704.0559
  • Received Date: 21 Feb 2014
  • Rev Recd Date: 19 Apr 2014
  • Publish Date: 25 Jul 2014
  • We experimentally and theoretically investigate the optical properties of GaN-based photonic crystal surface emitting lasers(PCSELs). We discuss the effects of lattice constant, boundary shape, and lattice type of photonic crystal(PC) on lasing characteristics. The PCSEL structures are fabricated using the metal-organic chemical vapor deposition, the electron beam lithography, and inductively coupled plasma reactive ion etching technique. The optical properties of PCSEL which include the diffraction pattern, emission spectrum, divergence angle and so on are measured by the angular-resolved photoluminescence system. Meanwhile, the plane wave expansion and multiple scattering method(MSM) are used to calculate the band diagram and threshold gain of PCSELs, respectively. The results reveal that the lattice constant plays an important role in selection of lasing mode. Despite the lasing wavelength and linewidth of circular and hexagonal shapes PCSELs are almost the same, the threshold excitation energy density of circular shape PCSEL is 0.3 mJ/cm2 smaller than that of hexagonal PCSEL. The PCSEL with honeycomb lattice shows the lower excitation energy density of 1.6 mJ/cm2 and divergence angle of 1.3. In case of square lattice, the excitation energy density is twice as large as that of honeycomb lattice. The overall results show that the single-mode emission, low divergence angle, and so on can be produced from GaN-based PCSEL. On the other hand, the numerical results calculated using the MSM are in good agreement with experimental results. The MSM could be a fast and cost-effective approach for predicting the lasing characteristic. We believe that these contributions provide guidance for the development of GaN-based PCSEL.


  • loading
  • [1] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett.,1978,58(20):2059-2062.
    [2] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett.,1987,58(23):2486-2489.
    [3] MEIER M,MEKIS A,DODABALAPUR A,et al.. Laser action from two-dimensional distributed feedback in photonic crystals[J]. Appl. Phys. Lett.,1999,74(1):7-9.
    [4] SIRIGU L,TERAZZI R,AMANTI I,et al.. Terahertz quantum cascade lasers based on two-dimensional photonic crystal resonators[J]. Opt. Express,2008,16(8):5206-5217.
    [5] MATSUBARA H,YOSHIMOTO S,SAITO H,et al.. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths[J]. Science,2008,319(5682):445-447.
    [6] LU T C,CHEN S W,LIN L F,et al.. GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector[J]. Appl. Phys. Lett.,2008,92(1):011129-011129-3.
    [7] KAWASHIMA S,KAWASHIMA T,NAGATOMO Y,et al.. GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding[J]. Appl. Phys. Lett.,2010,97(25):251112-251112-3.
    [8] LAI C F,KUO H C,YU P,et al.. Highly-directional emission patterns based on near single guided mode extraction from GaN-based ultrathin microcavity light-emitting diodes with photonic crystals[J]. Appl. Phys. Lett.,2010,97(1):013108-013108-3.
    [9] IWAHASHI S,KUROSAKA Y,SAKAI K,et al.. Higher-order vector beams produced by photonic-crystal lasers[J]. Opt. Express,2011,19(13):11963-11968.
    [10] WU T T,WENG P S,HOU Y J,et al.. GaN-based photonic crystal surface emitting lasers with central defects[J]. Appl. Phys Lett.,2011,99(22):221105-221105-3.
    [11] PAINTER O,LEE R K,SCHERER A,et al.. Two-dimensional photonic band-gap defect mode Laser[J]. Science,1999 284(5421):1819-1821.
    [12] PARK H G,KIM S H,KWON S H,et al.. Electrically driven single-cell photonic crystal laser[J]. Science,2004,305(5689):1444-1447.
    [13] WENG P H,WU T T,LU T C,et al.. Threshold gain analysis in GaN-based photonic crystal surface emitting lasers[J]. Opt. Lett.,2011,36(10):1908-1910.
    [14] CHEN S W,LU T C,KAO T T. Study of GaN-based photonic crystal surface emitting lasers with AlN/GaN distributed Bragg reflectors[J]. IEEE J. Select. Topics Quantum Electron.,2009,15(N3):885-891.
    [15] LU T C,CHEN S W,KAO T T,et al.. Characteristics of GaN-based photonic crystal surface-emitting lasers[J]. Appl. Phys. Lett.,2008,93(11):111111-111111-3.
    [16] NAKAMURA S,SENOH M,IWASA N,et al.. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures[J]. Jpn. J. Appl. Phys.,1995,34:L797-L799.
    [17] NAKAMURA S,SENOH M,NAGAHAMA S,et al.. Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime[J]. Appl. Phys Lett.,1997,70(7):868-870.
    [18] OHNISHI D,OKANO T,IMADA M,et al.. Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser[J]. Opt. Express,2004,12(8):1562-1568.
    [19] HUNG C T,SYU Y C,WU T T,et al.. Design of low threshold photonic crystal surface emitting lasers[J]. IEEE Photon. Techn. Lett.,2012,24(N10):866-868.
    [20] SAKODA K,OHTAKA K,UETA T. Low-threshold laser oscillation due to group-velocity anomaly peculiar to two-and three-dimensional photonic crystals[J]. Opt. Express,1999,4(12):481-489.
    [21] LEE Y H,RYU H Y,NOTOMI M. Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab[J]. Phys. Rev. B,2003,68(4):045209-045209-8.
    [22] SAKAI K,YUE J,NODA S. Coupled-wave model for triangular-lattice photonic crystal with transverse electric polarization[J]. Opt. Express,2008,16(9):6033-6040.
    [23] NOJIMA S. Theoretical analysis of feedback mechanisms of two-dimensional finite-sized photonic-crystal lasers[J]. J. Appl. Phys.,2005,98(4):043102-043102-9.
    [24] WENG P H,WU T T,LU T C. Study of band-edge modes in gan-based photonic crystal surface emitting lasers by the multiple scattering method[J]. IEEE J. Select. Topics Quantum Electron.,2012,18(6):1629-1635.
    [25] CHEN Y Y,YE Z. Propagation inhibition and wave localization in a two-dimensional random liquid medium[J]. Phys. Rev. E.,2002,65(5):056612-056612-5.
    [26] IMADA M,CHUTINAN A,NODA S,et al.. Multidirectionally distributed feedback photonic crystal lasers[J]. Phys. Rev. B,2002,65(19):195306-195306-8.
    [27] CHEN S W,LU TC,HOU Y J,et al.. Lasing characteristics at different band edges in GaN photonic crystal surface emitting lasers[J]. Appl. Phys. Lett.,2010,96(7):071108-071108-3.
    [28] KIM S,PARK Y,HWANGK,et al.. High-power and large-alignment-tolerance fiber coupling of honeycomb-lattice photonic crystal Γ-point band-edge laser[J]. J. Opt. Soc. Am. B,2009,26(7):1330-1333.
    [29] LEE P T,LU T W,SIO K U. Multi-functional light emitter based on band-edge modes near Γ-point in honeycomb photonic crystal[J]. J. Lightwave Technol.,2011,29(12):1797-1801.
    [30] KIM D U,KIM S,LEE J,et al.. Free-standing GaN-based photonic crystal band-edge laser[J]. IEEE Photon. Technol. Lett.,2011,23(20):1454-1456.

  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1476) PDF downloads(719) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint