Volume 7 Issue 4
Aug.  2014
Turn off MathJax
Article Contents
LI Zong-xuan, JIN Guang, ZHANG Lei, KONG Lin. Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture[J]. Chinese Optics, 2014, 7(4): 532-541. doi: 10.3788/CO.20140704.0532
Citation: LI Zong-xuan, JIN Guang, ZHANG Lei, KONG Lin. Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture[J]. Chinese Optics, 2014, 7(4): 532-541. doi: 10.3788/CO.20140704.0532

Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture

doi: 10.3788/CO.20140704.0532
  • Received Date: 21 Feb 2014
  • Rev Recd Date: 23 Apr 2014
  • Publish Date: 25 Jul 2014
  • The aperture and structural configuration extremely determine the technical difficulty and economic cost of a spaceborne telescope. In order to realize higher spatial resolution and capacity of acquisition of information, the aperture of primary mirror of space telescope abroad is getting larger and larger. From the 2.4 m aperture of the Hubble Space Telescope(HST), to the 4 m aperture of the New World Observer(NWO), up until to the 8-m aperture of the Advanced Technology Large Aperture Space Telescope(ATLAST), all without exception embodies pursuing the high capacity of ultra-large aperture observation. Monolithic primary mirror is becoming the first choice of ultra-large aperture space telescope by right of its technical reliability and economical efficiency. Through analysis and discussion on developing ultra-large aperture space telescopes abroad, the key techniques and trend of development of ultra-large aperture primary mirror are investigated. Then we proposed the assumption to build a 3.5 m aperture space telescope with a monolithic primary mirror based on the state-of-art capacity of lunching and optical fabrication in China.

     

  • loading
  • [1] STAHL H P. Optic needs for future space telescopes[J]. SPIE,2003,5180:1-5.
    [2] STAHL H P. Development of lightweight mirror technology for the next generation space telescope[J]. SPIE,2001,4451:1-4.
    [3] EGERMAN R,MATTHEWS G,WYNN J. The current and future state-of-the-art glass optics for space-based astronomical observatories[R]. US: ITT Corporation.
    [4] KENDRICK S,STAHL H P. Large aperture space telescope mirror fabrication trades[J]. SPIE,2008,7010:70102G.
    [5] STAHL H P. JWST mirror technology development results[J]. SPIE,2007,6671:667102.
    [6] KENDRICK S. Monolithic versus segmented primary mirror concepts for space telescopes[J]. SPIE,2009,7426:74260O.
    [7] NEIN M E,LAWRENCE J F. Monolithic vs. deployable primary mirror trade considerations for the next generation space telescope[R]. US:NASA,2002.
    [8] CASTEL D,SEIN E,LOPEZ S,et al.. The 3.2 m all SiC telescope for SPICA[J]. SPIE,2012,8450:84502P.
    [9] KANEDA H,NAKAGAWA T,ENYA K,et al.. Optical testing activities for the SPICA telescope[J]. SPIE,2010,7731:77310V.
    [10] BORUCKI W J,KOCH D G,LISSAUERA J,et al.. The kepler mission:a wide field of view photometer designed to determine the frequency of earth-size planets around solar-like stars[J]. SPIE,2003,4854:129-140.
    [11] KOCH D,BORUCKI W,DUNHAM E. Overview and status of the Kepler Mission[J]. SPIE,2004,5487:1491-1500.
    [12] LAMPTON M,SHOLL M,KRIM M. SNAP telescope: an update[J]. SPIE,2004,5166:113-123.
    [13] BESUNER R W,CHOW K P,KENDRICK S E. Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing[J]. SPIE,2008,7018:701816.
    [14] STAHL H P. JWST primary mirror technology development lessons learned[J]. SPIE,2010,7796:779604.
    [15] ALLEN L,ANGEL R,MANGUS J D,et al.. The hubble space telescope optical systems failure report[R]. US:NASA,1990.
    [16] FEINBERG L D,GEITHNER P H. Applying HST lessons learned to JWST[J]. SPIE,2008,7010:70100N.
    [17] YODER J P R. Opto-Mechanical Systems Design[M]. 3rd ed. US:SPIE Press,2006.
    [18] BITTNER H,ERDMANN M,HABERLER P. SOFIA primary mirror assembly:structural properties and optical performance[J]. SPIE,2003,4857:266-273.
    [19] CASEY S C. The SOFIA program:astronomers return to the stratosphere[J]. SPIE,2006,6267:62670Q.
    [20] KEAS P,BREWSTER R,GUERRA J. SOFIA Telescope modal survey test and test-model correlation[J]. SPIE,2010,7738:77380K.
    [21] KAERCHER J,EISENTRAEGER P,S M. Mechanical principles of large mirror supports[J]. SPIE,2010,7733:77332O.
    [22] BOUGOIN M,LAVENAC J. From HERSCHEL to GAIA,3-meter class SiC space optics[J]. SPIE,2011,8126:81260V.
    [23] TOULEMONT Y,PASSVOGEL T,PILLBRAT G. The 3,5m all SiC telescope for HERSCHEL[J]. SPIE,2004,5487:1119-1128.
    [24] WEST S C,BAILEY S H,BAUMAN S. A space imaging concept based on a 4 m structured spun-cast borosilicate monolithic primary mirror[J]. SPIE,2010,7731:77311O.
    [25] MARC P. Science with an 8-meter to 16-meter optical/UV space telescope[J]. SPIE,2008,7010:701021.
    [26] STAHL H P. Design study of 8 meter monolithic mirror UV/optical space telescope[J]. SPIE,2008,7010:701022.
    [27] WILLIAM R O,FEINBERG L D,PURVES L R. ATLAST-9.2 m:a large-aperture deployable space telescope[J]. SPIE,2010,7731:77312M.
    [28] ARGABRIGHT V,ARNOLD B,ARONSTEIN D. Advanced Technology Large-Aperture Space Telescope(ATLAST): a technology roadmap for the next decade[R]. US:NASA,2009.
    [29] HYDE T,POSTMAN M. Technology development project plan for the Advanced Technology Large Aperture Space Telescope(ATLAST), a roadmap for UVIOR Technology, 2010-2020[R]. US:NASA,2009.
    [30] THORSTEN D,PETER H,RALF J. Status of Zerodur mirror blank production at Schott[J]. SPIE,2005,5869:5869O2.
    [31] HULL T,HARTMANN P,R CLARKSON A. Lightweight high-performance 1-4 meter class spaceborne mirrors:emerging technology for demanding spaceborne requirements[J]. SPIE,2010,7739:77390C.
    [32] HULL T,WESTERHOFF T,PEPI J W. Game-changing approaches to affordable advanced lightweight mirrors Ⅱ:new cases analyzed for extreme ZERODUR lightweighting and relief from the classical polishing parameter constraint[J]. SPIE,2012,8450:845050.
    [33] SCOTT S W,STAHL H P. Overview of mirror technology development for large lightweight space-based optical systems[J]. SPIE,2001,4198:1-5.
    [34] 张舸. 1.5 m量级SiC陶瓷素坯凝胶注模成型工艺[J]. 光学精密工程,2013,21(12):2989-2993. ZHANG G. Gelcasting process of 1.5 m SiC ceramic green body[J]. Opt. Precision Eng.,2013,21(12):2989-2993.(in Chinese)
    [35] 徐宏,关英俊. 空间相机1 m口径反射镜组件结构设计[J]. 光学精密工程,2013,21(6):1488-1495. XU H,GUAN Y J. Structural design of 1 m diameter space mirror component of space camera[J]. Opt. Precision Eng.,2013,21(6):1488-1495.(in Chinese)
    [36] 刘巨,董得义,辛宏伟. 大口径反射镜组件的温度适应性[J]. 光学精密工程,2013,21(12):3169-3175. LIU J,DONG D Y,XIN H W. Temperature adaptation of large aperture mirror assembly[J]. Opt. Precision Eng.,2013,21(12):3169-3175.(in Chinese)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1608) PDF downloads(871) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return