Volume 7 Issue 3
Jun.  2014
Turn off MathJax
Article Contents
WANG Yu-qing, WANG Suo-jian. Quality assessment method of IR and visible fusion image[J]. Chinese Optics, 2014, 7(3): 396-401. doi: 10.3788/CO.20140703.0396
Citation: WANG Yu-qing, WANG Suo-jian. Quality assessment method of IR and visible fusion image[J]. Chinese Optics, 2014, 7(3): 396-401. doi: 10.3788/CO.20140703.0396

Quality assessment method of IR and visible fusion image

doi: 10.3788/CO.20140703.0396
  • Received Date: 14 Dec 2013
  • Rev Recd Date: 16 Feb 2014
  • Publish Date: 25 May 2014
  • In order to improve the consistency of the assessment result of image fusion with that of Human Visual System, the state-of-the-art image fusion assessment methods are deeply analysed, then a new assessment method is proposed in this paper, which is based on the complex number expression for image structure. The gradient information of luminance layer of color image is used to perform the task. When it is used to describe image structure, more human visual system-sensitive information are contain in the corresponding complex matrix. Due to the calculation problem of mutual information, we perform singular value decomposition on the complex matrix, and the singular value vector of each image block is used to construct the new matrix. Results from experiments show that the proposed method gives evaluation of 3.748 5 and 3.722 2 for pyramid and DWT methods. It improves the consistency of assessment results with those of human visual system.

     

  • loading
  • [1] 杨云,岳柱. 基于融合图像轮廓矩和Harris角点方法的遮挡人体目标识别研究[J]. 液晶与显示,2013,28(2):273-277. YANG Y,YUE ZH. Human body target recognition under occlusion based on fusion of image contour moment and harris angular points[J]. Chinese J. Liquid Crystals and Displays,2013,28(2):273-277.(in Chinese) [2] XYDAES C,PETROVI V.Objective image fusion performance measure[J]. Electronic Letters,2000,36(4):308-309. [3] QU G H,ZHANG D L,YAN P F. Information measure for performance of image fusion[J]. Electronics Letters,2002,37(7):313-315. [4] 王宇庆. 基于梯度复数矩阵的图像质量评价方法[J]. 计算机技术与发展,2013(1):63-66. WANG Y Q.Image quality assessment based on gradient complex matrix[J]. Computer Technology and Development,2013(1):63-66. (in Chinese) [5] PETROVIC'V S,XYDEAS C S. Gradient-based multiresolution image fusion[J]. IEEE T. Image Processing,2004,13:28-237. [6] 王宇庆. 局部方差在图像质量评价中的应用[J]. 中国光学,2011,4(5):531-536. WANG Y Q. Application of local variance in image quality assessment[J]. Chinese Optics,2011,4(5):531-536. (in Chinese) [7] 骞森,朱剑英. 基于奇异值分解的图像质量评价[J]. 东南大学学报 (自然科学版),2006,36(4):643-646. QIAN S,ZHU J Y. Image quality measure using singular value decomposition[J]. J. Southeast University(Natural Science Edition),2006,36(4):643-646.(in Chinese) [8] SHNAYDERMAN A,GUSEV A,ESKICIOGLU A M. An SVD-based grayscale image quality measure for local and global assessment[J]. IEEE T. Image Processing,2006,15(2):422-429. [9] NARWARIA M,LIN W S. Objective image quality assessment based on support vector regression[J]. IEEE T. Neural Networks,2010,21(3):515-519. [10] NARWARIA M,LIN W S. Scalable image quality assessment based on structural vectors[J]. IEEE,2009:1-6. [11] 王宇庆,朱明. 评价彩色图像质量的四元数矩阵最大奇异值方法[J]. 光学 精密工程,2013,21(2):469-478. WANG Y Q,ZHU M. Max singular value method of quaternion matrix for evaluating color image quality[J]. Opt. Precision Eng.,2013,21(2):469-478.(in Chinese) [12] 姚军财. 基于人眼对比度敏感视觉特性的图像质量评价方法[J]. 液晶与显示,2011,26(3):390-396. YAO J C. Image quality assessment method based on contrast sensitivity characteristics of human vision system[J]. Chinese J. Liquid Crystals and Displays,2011,26(3):390-396.(in Chinese) [13] SHEIKH H R,WANG Z,CORMACK L,et al.. LIVE image quality assessment database release [EB/OL].[2013-7-18].http://live.ece.utexas.edu/research/quality.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1116) PDF downloads(854) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return