Citation: | ZHANG Jian-fa, YUAN Xiao-dong, QIN Shi-qiao. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349 |
[1] ZHELUDEV N I. The road ahead for metamaterials[J]. Science,2010,328(5978):582-583. [2] SHELBY R A,SMITH D R,SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science,2001,292(5514):77-79. [3] YEN T J,PADILLA W,FANG N,et al.. Terahertz magnetic response from artificial materials[J]. Science,2004,303(5663):1494-1496. [4] LINDEN S,ENKRICH C,WEGENER M,et al.. Magnetic response of metamaterials at 100 terahertz[J]. Science,2004,306(5700):1351-1353. [5] ZHANG S,FAN W,PANOIU N,et al.. Experimental demonstration of near-infrared negative-index metamaterials[J]. Physical Rev. Lett.,2005,95(13):137404. [6] XIAO S,CHETTIAR U K,KILDISHEV A V,et al.. Yellow-light negative-index metamaterials[J]. Optics Letters,2009,34(22):3478-3480. [7] BURGOS S P,DE WAELE R,POLMAN A,et al.. A single-layer wide-angle negative-index metamaterial at visible frequencies[J]. Nature Materials,2010,9(5):407-412. [8] XU T,AGRAWAL A,ABASHIN M,et al.. All-angle negative refraction and active flat lensing of ultraviolet light[J]. Nature,2013,497(7450):470-474. [9] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Physics-Uspekhi,1968,10(4):509-514. [10] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Rev. Lett.,2000,85(18):3966. [11] YU N,GENEVET P,KATS M A,et al.. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science,2011,334(6054):333-337. [12] NI X,EMANI N K,KILDISHEV A V,et al.. Broadband light bending with plasmonic nanoantennas[J]. Science,2012,335(6067):427-427. [13] KILDISHEV A V,BOLTASSEVA A,SHALAEV V M. Planar photonics with metasurfaces[J]. Science,2013,339(6125):1232009. [14] ZHELUDEV N I,KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials,2012,11(11):917-924. [15] GANSEL J K,THIEL M,RILL M S,et al.. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science,2009,325(5947):1513-1515. [16] ZHAO Y,BELKIN M,AL A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J]. Nature Communications,2012,3:870. [17] LANDY N,SAJUYIGBE S,MOCK J,et al.. Perfect metamaterial absorber[J]. Phys. Rev. Lett.,2008,100(20):207402. [18] LIU N,MESCH M,WEISS T,et al.. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters,2010,10(7):2342-2348. [19] MAIER T,BR CKL H. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters,2009,34(19):3012-3014. [20] WATTS C M,LIU X,PADILLA W J. Metamaterial Electromagnetic Wave Absorbers(Adv. Mater.23/2012)[J]. Advanced Materials,2012,24(23):OP181-OP181. [21] AIETA F,GENEVET P,KATS M A,et al.. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters,2012,12(9):4932-4936. [22] NI X,ISHII S,KILDISHEV A V,et al.. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light:Science Applications,2013,2(4):e72. [23] GIL I,BONACHE J,GARCIA-GARCIA J,et al.. Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators[J]. Microwave Theory and Techniques,IEEE Transactions on,2006,54(6):2665-2674. [24] SHADRIVOV I V,MORRISON S K,KIVSHAR Y S. Tunable split-ring resonators for nonlinear negative-index metamaterials[J]. Optics Express,2006,14(20):9344-9349. [25] LIU A,ZHU W,TSAI D,et al.. Micromachined tunable metamaterials:a review[J]. J. Optics,2012,14(11):114009. [26] OU J-Y,PLUM E,JIANG L,et al.. Reconfigurable photonic metamaterials[J]. Nano Letters,2011,11(5):2142-2144. [27] ZHU W M,LIU A Q,ZHANG X M,et al.. Switchable magnetic metamaterials using micromachining processes[J]. Advanced Materials,2011,23(15):1792-1796. [28] OU J-Y,PLUM E,ZHANG J,et al.. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared[J]. Nature Nanotechnology,2013,8(4):252-255. [29] GIL I,MARTIN F,ROTTENBERG X,et al.. Tunable stop-band filter at Q-band based on RF-MEMS metamaterials[J]. Electronics Letters,2007,43(21):1153-1153. [30] CHEN H-T,PADILLA W J,ZIDE J M,et al.. Active terahertz metamaterial devices[J]. Nature,2006,444(7119):597-600. [31] GHOLIPOUR B,ZHANG J,MACDONALD K F,et al.. An All-Optical, Non-volatile, bidirectional, phase-change meta-switch[J]. Advanced Materials,2013,25(22):3050-3054. [32] NIKOLAENKO A E,DE ANGELIS F,BODEN S,et al.. Carbon nanotubes in a photonic metamaterial[J]. Phys. Rev. Lett.,2010,104:153902. [33] ZHAO Q,KANG L,DU B,et al.. Electrically tunable negative permeability metamaterials based on nematic liquid crystals[J]. Appl. Physics Letters,2007,90(1):011112-011112-011113. [34] BOARDMAN A D,GRIMALSKY V V,KIVSHAR Y S,et al.. Active and tunable metamaterials[J]. Laser Photonics Reviews,2011,5(2):287-307. [35] ZHAO Q,KANG L,DU B,et al.. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite[J]. Phys. Rev. Lett.,2008,101(2):027402. [36] ZHAO Q,ZHOU J,ZHANG F,et al.. Mie resonance-based dielectric metamaterials[J]. Materials Today,2009,12(12):60-69. [37] GINN J C,BRENER I,PETERS D W,et al.. Realizing optical magnetism from dielectric metamaterials[J]. Phys. Rev. Lett.,2012,108(9):097402. [38] ZHANG J,MACDONALD K F,ZHELUDEV N I. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial[J]. Optics Express,2013,21(22):26721-26728. [39] SMITH D R,PADILLA W J,VIER D,et al.. Composite medium with simultaneously negative permeability and permittivity[J]. Phys. Rev. Lett.,2000,84(18):4184. [40] FEDOTOV V,ROSE M,PROSVIRNIN S,et al.. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Phys. Rev. Lett.,2007,99(14):147401. [41] VALENTINE J,ZHANG S,ZENTGRAF T,et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature,2008,455(7211):376-379. [42] BAENA J D,BONACHE J,MART N F,et al.. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines[J]. Microwave Theory and Techniques,IEEE Transactions on,2005,53(4):1451-1461. [43] ZHOU J,KOSCHNY T,KAFESAKI M,et al.. Saturation of the magnetic response of split-ring resonators at optical frequencies[J]. Phys. Rev. Lett.,2005,95(22):223902. [44] REYNET O,ACHER O. Voltage controlled metamaterial[J]. Appl. Phys. Lett.,2004,84(7):1198-1200. [45] GIL I,GARCIA-GARCIA J,BONACHE J,et al.. Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies[J]. Electronics Letters,2004,40(21):1347-1348. [46] SHADRIVOV I V,KOZYREV A B,van der WEIDE DW,et al.. Tunable transmission and harmonic generation in nonlinear metamaterials[J]. Appl. Phys. Lett.,2008,93(16):161903-161903-161903. [47] LAPINE M,POWELL D,GORKUNOV M,et al.. Structural tunability in metamaterials[J]. Appl. Phys. Lett.,2009,95(8):084105-084105-084103. [48] TAO H,STRIKWERDA A,FAN K,et al.. Reconfigurable terahertz metamaterials[J]. Phys. Rev. Lett.,2009,103(14):147401. [49] FU Y H,LIU A Q,ZHU W M,et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators[J]. Advanced Functional Materials,2011,21(18):3589-3594. [50] PRYCE I M,AYDIN K,KELAITA Y A,et al.. Highly strained compliant optical metamaterials with large frequency tunability[J]. Nano Letters,2010,10(10):4222-4227. [51] LI J,SHAH C M,WITHAYACHUMNANKUL W,et al.. Mechanically tunable terahertz metamaterials[J]. Appl. Phys. Lett.,2013,102(12):121101-121101-121104. [52] LEE S,KIM S,KIM T T,et al.. Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts[J]. Advanced Materials,2012,24(26):3491-3497. [53] PRYCE I M,AYDIN K,KELAITA Y A,et al.. Characterization of the tunable response of highly strained compliant optical metamaterials[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2011,369(1950):3447-3455. [54] AKSU S,HUANG M,ARTAR A,et al.. Flexible plasmonics on unconventional and nonplanar substrates[J]. Advanced Materials,2011,23(38):4422-4430. [55] PADILLA W J,TAYLOR A J,HIGHSTRETE C,et al.. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Phys. Rev. Lett.,2006,96(10):107401. [56] CHEN H-T,O'HARA J F,AZAD A K,et al.. Experimental demonstration of frequency-agile terahertz metamaterials[J]. Nature Photonics,2008,2(5):295-298. [57] CHEN H-T,PADILLA W J,CICH M J,et al.. A metamaterial solid-state terahertz phase modulator[J]. Nature Photonics,2009,3(3):148-151. [58] JUN Y C,GONZALES E,RENO J L,et al.. Active tuning of mid-infrared metamaterials by electrical control of carrier densities[J]. Optics Express,2012,20(2):1903-1911. [59] MIAO X,PASSMORE B,GIN A,et al.. Doping tunable resonance: toward electrically tunable mid-infrared metamaterials[J]. Appl. Phys. Lett.,2010,96(10):101111-101111-101113. [60] JUN Y C,RENO J,RIBAUDO T,et al.. Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures[J]. Nano Letters,2013,13(11):5391-5396. [61] ZHANG F,ZHAO Q,KANG L,et al.. Magnetic control of negative permeability metamaterials based on liquid crystals. Paper presented at:Microwave Conference,2008. EuMC 2008. 38th European2008. [62] BUCHNEV O,WALLAUER J,WALTHER M,et al.. Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial[J]. Appl. Phys. Lett.,2013,103(14):141904. [63] SHREKENHAMER D,CHEN W-C,PADILLA W J. Liquid crystal tunable metamaterial absorber[J]. Phys. Rev. Lett.,2013,110(17):177403. [64] BUCHNEV O,OU J,KACZMAREK M,et al.. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell[J]. Opt. Express,21,2013:1633-1638. [65] MINOVICH A,FARNELL J,NESHEV D N,et al.. Liquid crystal based nonlinear fishnet metamaterials[J]. Appl. Phys. Lett.,2012,100(12):121113-121113-121114. [66] DRISCOLL T,KIM H-T,CHAE B-G,et al.. Memory metamaterials[J]. Science,2009,325(5947):1518-1521. [67] DICKEN M J,AYDIN K,PRYCE I M,et al.. Frequency tunable near-infrared metamaterials based on VO2 phase transition[J]. Opt. Express,2009,17(20):18330-18339. [68] DRISCOLL T,PALIT S,QAZILBASH M M,et al.. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide[J]. Appl. Phys. Lett.,2008,93(2):024101-024103. [69] SAMSON Z,MACDONALD K,De ANGELIS F,et al.. Metamaterial electro-optic switch of nanoscale thickness[J]. Appl. Phys. Lett.,2010,96(14):143105-143105-143103. [70] EGGLETON B J,LUTHER-DAVIES B,RICHARDSON K. Chalcogenide photonics[J]. Nature Photonics,2011,5(3):141-148. [71] WURTZ G A,POLLARD R,HENDREN W,et al.. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality[J]. Nature Nanotechnology,2011,6(2):107-111. [72] REN M,PLUM E,XU J,et al.. Giant nonlinear optical activity in a plasmonic metamaterial[J]. Nature Communications,2012,3:833. [73] ZHU Y,HU X,FU Y,et al.. Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range[J]. Scientific Reports,2013,3:2338. [74] SCHULLER J A,BARNARD E S,CAI W,et al.. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials,2010,9(3):193-204. [75] REN M,JIA B,OU J Y,et al. Nanostructured plasmonic medium for terahertz bandwidth all‐optical switching[J]. Advanced Materials,2011,23(46):5540-5544. [76] LUK'YANCHUK B,ZHELUDEV N I,MAIER S A,et al.. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials,2010,9(9):707-715. [77] DANI K M,KU Z,UPADHYA P C,et al.. Subpicosecond optical switching with a negative index metamaterial[J]. Nano Letters,2009,9(10):3565-3569. [78] NIKOLAENKO A E,PAPASIMAKIS N,ATMATZAKIS E,et al.. Nonlinear graphene metamaterial[J]. Appl. Phys. Lett.,2012,100(18):181109-181109-181103. [79] RAKICH P T,POPOVI,CACUTE M A,et al.. Trapping, corralling and spectral bonding of optical resonances through optically induced potentials[J]. Nature Photonics,2007,1(11):658-665. [80] MARQUARDT F,GIRVIN S. Optomechanics(a brief review)[J]. Physics,2009,2:40. [81] BUTSCH A,KANG M,EUSER T,et al.. Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber[J]. Phys. Rev. Lett.,2012,109(18):183904. [82] ZHANG J,MACDONALD K,ZHELUDEV N. Optical gecko toe:optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces[J]. Physical Review B,2012,85(20):205123. [83] TANG C,WANG Q,LIU F,et al.. Optical forces in twisted split-ring-resonator dimer stereometamaterials[J]. Optics Express,2013,21(10):11783-11793. [84] ZHAO R,TASSIN P,KOSCHNY T,et al.. Optical forces in nanowire pairs and metamaterials[J]. Optics Express,2010,18(25):25665-25676. [85] GINIS V,TASSIN P,SOUKOULIS C M,et al.. Enhancing optical gradient forces with metamaterials[J]. Phys. Rev. Lett.,2013,110(5):057401. [86] VAN THOURHOUT D,ROELS J. Optomechanical device actuation through the optical gradient force[J]. Nature Photonics,2010,4(4):211-217. [87] LAPINE M,SHADRIVOV I V,POWELL D A,et al.. Magnetoelastic metamaterials[J]. Nature Materials,2011,11(1):30-33. [88] LAPINE M,SHADRIVOV I,KIVSHAR Y. Wide-band negative permeability of nonlinear metamaterials[J]. Scientific Eeports,2012,2:412. [89] SLOBOZHANYUK A P,LAPINE M,POWELL D A,et al.. Flexible helices for nonlinear metamaterials[J]. Advanced Materials,2013,25(25):3409-3412. [90] ZHANG J,MACDONALD K F,ZHELUDEV N I. Nonlinear dielectric optomechanical metamaterials[J]. Light Sci. Appl.,08/30/online 2013;2:e96. [91] MANIPATRUNI S,ROBINSON J T,LIPSON M. Optical nonreciprocity in optomechanical structures[J]. Phys. Rev. Lett.,2009,102(21):213903. [92] HAFEZI M,RABL P. Optomechanically induced non-reciprocity in microring resonators[J]. Optics Express,2012,20(7):7672. [93] KANG M,BUTSCH A,RUSSELL P S J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre[J]. Nature Photonics,2011,5(9):549-553. [94] GEIM A K,NOVOSELOV K S. The rise of graphene[J]. Nature Materials,2007,6(3):183-191. [95] NOVOSELOV K,GEIM A K,MOROZOV S,et al.. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438(7065):197-200. [96] LIU M,YIN X,ULIN-AVILA E,et al.. A graphene-based broadband optical modulator[J]. Nature,2011,474(7349):64-67. [97] PAPASIMAKIS N,LUO Z,SHEN Z X,et al.. Graphene in a photonic metamaterial[J]. Opt. Express,2010,18(8):8353-8359. [98] LEE S H,CHOI M,KIM T T,et al.. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials,2012,11(11):936-941. [99] EMANI N K,CHUNG T F,NI X,et al.. Electrically tunable damping of plasmonic resonances with graphene[J]. Nano Letters,2012,12(10):5202-5206. [100] YAO Y,KATS M A,GENEVET P,et al.. Broad electrical tuning of graphene-loaded plasmonic antennas[J]. Nano Letters,2013,13(3):1257-1264. [101] JABLAN M,BULJAN H,SOLJA?I? M. Plasmonics in graphene at infrared frequencies[J]. Physical review B,2009,80(24):245435. [102] CHEN J,BADIOLI M,ALONSO-GONZÁLEZ P,et al.. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature,2012,487(7405):77-81. [103] FEI Z,RODIN A,ANDREEV G,et al.. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature,2012,487(7405):82-85. [104] YAN H,LOW T,ZHU W,et al.. Damping pathways of mid-infrared plasmons in graphene nanostructures[J]. Nature Photonics,2013,7(5):394-399. [105] KOPPENS F H,CHANG D E,GARCIA DE ABAJO F J. Graphene plasmonics:a platform for strong light matter interactions[J]. Nano Letters,2011,11(8):3370-3377. [106] GRIGORENKO A,POLINI M,NOVOSELOV K. Graphene plasmonics[J]. Nature Photonics,2012,6(11):749-758. [107] YAN H,LI X,CHANDRA B,et al.. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology,2012,7(5):330-334. [108] PAPASIMAKIS N,THONGRATTANASIRI S,ZHELUDEV N I,et al.. The magnetic response of graphene split-ring metamaterials[J]. Light:Science Applications,2013,2(7):e78. [109] JU L,GENG B,HORNG J,et al.. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology,2011,6(10):630-634. [110] THONGRATTANASIRI S,KOPPENS F H,DE ABAJO F J G. Complete optical absorption in periodically patterned graphene[J]. Phys. Rev. Lett.,2012,108(4):047401. [111] FANG Z,THONGRATTANASIRI S,SCHLATHER A,et al.. Gated tunability and hybridization of localized plasmons in nanostructured graphene[J]. ACS Nano,2013,7(3):2388-2395. [112] HAND T H,CUMMER S A. Controllable magnetic metamaterial using digitally addressable split-ring resonators[J]. Antennas and Wireless Propagation Letters,IEEE,2009,8:262-265. [113] CHAN W L,CHEN H T,TAYLOR A J,et al.. A spatial light modulator for terahertz beams[J]. Appl. Phys. Lett.,2009,94(21):213511-213511-213513. [114] LIU X,STARR T,STARR A F,et al.. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Phys. Rev. Lett.,2010,104(20):207403. [115] SUN J,TIMURDOGAN E,YAACOBI A,et al.. Large-scale nanophotonic phased array[J]. Nature,2013,493(7431):195-199. [116] HUANG L,CHEN X,BAI B,et al.. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science Applications,2013,2(3):e70. [117] LIN J,MUELLER J B,WANG Q,et al.. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science,2013,340(6130):331-334. [118] SUN S,HE Q,XIAO S,et al.. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials,2012,11(5):426-431. [119] GRADY N K,HEYES J E,CHOWDHURY D R,et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science,2013,340(6138):1304-1307. [120] BONACCORSO F,SUN Z,HASAN T,et al.. Graphene photonics and optoelectronics[J]. Nature Photonics,2010,4(9):611-622. [121] NOVOSELOV K,FAL V,COLOMBO L,et al.. A roadmap for graphene[J]. Nature,2012,490(7419):192-200. [122] LEE S H,CHOI J,KIM H D,et al.. Ultrafast refractive index control of a terahertz graphene metamaterial[J]. Scientific Reports,2013,3:2135. [123] BAO Q,LOH K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano,2012,6(5):3677-3694. [124] SIEGEL P H. Terahertz technology[J]. Microwave Theory and Techniques,IEEE Transactions on,2002,50(3):910-928. [125] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics,2007,1(2):97-105. |