Volume 7 Issue 3
Jun.  2014
Turn off MathJax
Article Contents
ZHANG Jian-fa, YUAN Xiao-dong, QIN Shi-qiao. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349
Citation: ZHANG Jian-fa, YUAN Xiao-dong, QIN Shi-qiao. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349

Tunable terahertz and optical metamaterials

doi: 10.3788/CO.20140703.0349
  • Received Date: 16 Dec 2013
  • Rev Recd Date: 18 Feb 2014
  • Publish Date: 25 May 2014
  • This paper reviews recent developments of tunable THz and optical metamaterials and gives insights into the trend of future research in this field as well as the potential applications. It can be expected that tunable metamaterials will remain to be a hot topic in metamaterials and their developments may lead to a revolution in optical devices and systems and make a deep impact on the development of photonic and THz technology.

     

  • loading
  • [1] ZHELUDEV N I. The road ahead for metamaterials[J]. Science,2010,328(5978):582-583. [2] SHELBY R A,SMITH D R,SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science,2001,292(5514):77-79. [3] YEN T J,PADILLA W,FANG N,et al.. Terahertz magnetic response from artificial materials[J]. Science,2004,303(5663):1494-1496. [4] LINDEN S,ENKRICH C,WEGENER M,et al.. Magnetic response of metamaterials at 100 terahertz[J]. Science,2004,306(5700):1351-1353. [5] ZHANG S,FAN W,PANOIU N,et al.. Experimental demonstration of near-infrared negative-index metamaterials[J]. Physical Rev. Lett.,2005,95(13):137404. [6] XIAO S,CHETTIAR U K,KILDISHEV A V,et al.. Yellow-light negative-index metamaterials[J]. Optics Letters,2009,34(22):3478-3480. [7] BURGOS S P,DE WAELE R,POLMAN A,et al.. A single-layer wide-angle negative-index metamaterial at visible frequencies[J]. Nature Materials,2010,9(5):407-412. [8] XU T,AGRAWAL A,ABASHIN M,et al.. All-angle negative refraction and active flat lensing of ultraviolet light[J]. Nature,2013,497(7450):470-474. [9] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Physics-Uspekhi,1968,10(4):509-514. [10] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Rev. Lett.,2000,85(18):3966. [11] YU N,GENEVET P,KATS M A,et al.. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science,2011,334(6054):333-337. [12] NI X,EMANI N K,KILDISHEV A V,et al.. Broadband light bending with plasmonic nanoantennas[J]. Science,2012,335(6067):427-427. [13] KILDISHEV A V,BOLTASSEVA A,SHALAEV V M. Planar photonics with metasurfaces[J]. Science,2013,339(6125):1232009. [14] ZHELUDEV N I,KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials,2012,11(11):917-924. [15] GANSEL J K,THIEL M,RILL M S,et al.. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science,2009,325(5947):1513-1515. [16] ZHAO Y,BELKIN M,AL A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J]. Nature Communications,2012,3:870. [17] LANDY N,SAJUYIGBE S,MOCK J,et al.. Perfect metamaterial absorber[J]. Phys. Rev. Lett.,2008,100(20):207402. [18] LIU N,MESCH M,WEISS T,et al.. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters,2010,10(7):2342-2348. [19] MAIER T,BR CKL H. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters,2009,34(19):3012-3014. [20] WATTS C M,LIU X,PADILLA W J. Metamaterial Electromagnetic Wave Absorbers(Adv. Mater.23/2012)[J]. Advanced Materials,2012,24(23):OP181-OP181. [21] AIETA F,GENEVET P,KATS M A,et al.. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters,2012,12(9):4932-4936. [22] NI X,ISHII S,KILDISHEV A V,et al.. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light:Science Applications,2013,2(4):e72. [23] GIL I,BONACHE J,GARCIA-GARCIA J,et al.. Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators[J]. Microwave Theory and Techniques,IEEE Transactions on,2006,54(6):2665-2674. [24] SHADRIVOV I V,MORRISON S K,KIVSHAR Y S. Tunable split-ring resonators for nonlinear negative-index metamaterials[J]. Optics Express,2006,14(20):9344-9349. [25] LIU A,ZHU W,TSAI D,et al.. Micromachined tunable metamaterials:a review[J]. J. Optics,2012,14(11):114009. [26] OU J-Y,PLUM E,JIANG L,et al.. Reconfigurable photonic metamaterials[J]. Nano Letters,2011,11(5):2142-2144. [27] ZHU W M,LIU A Q,ZHANG X M,et al.. Switchable magnetic metamaterials using micromachining processes[J]. Advanced Materials,2011,23(15):1792-1796. [28] OU J-Y,PLUM E,ZHANG J,et al.. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared[J]. Nature Nanotechnology,2013,8(4):252-255. [29] GIL I,MARTIN F,ROTTENBERG X,et al.. Tunable stop-band filter at Q-band based on RF-MEMS metamaterials[J]. Electronics Letters,2007,43(21):1153-1153. [30] CHEN H-T,PADILLA W J,ZIDE J M,et al.. Active terahertz metamaterial devices[J]. Nature,2006,444(7119):597-600. [31] GHOLIPOUR B,ZHANG J,MACDONALD K F,et al.. An All-Optical, Non-volatile, bidirectional, phase-change meta-switch[J]. Advanced Materials,2013,25(22):3050-3054. [32] NIKOLAENKO A E,DE ANGELIS F,BODEN S,et al.. Carbon nanotubes in a photonic metamaterial[J]. Phys. Rev. Lett.,2010,104:153902. [33] ZHAO Q,KANG L,DU B,et al.. Electrically tunable negative permeability metamaterials based on nematic liquid crystals[J]. Appl. Physics Letters,2007,90(1):011112-011112-011113. [34] BOARDMAN A D,GRIMALSKY V V,KIVSHAR Y S,et al.. Active and tunable metamaterials[J]. Laser Photonics Reviews,2011,5(2):287-307. [35] ZHAO Q,KANG L,DU B,et al.. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite[J]. Phys. Rev. Lett.,2008,101(2):027402. [36] ZHAO Q,ZHOU J,ZHANG F,et al.. Mie resonance-based dielectric metamaterials[J]. Materials Today,2009,12(12):60-69. [37] GINN J C,BRENER I,PETERS D W,et al.. Realizing optical magnetism from dielectric metamaterials[J]. Phys. Rev. Lett.,2012,108(9):097402. [38] ZHANG J,MACDONALD K F,ZHELUDEV N I. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial[J]. Optics Express,2013,21(22):26721-26728. [39] SMITH D R,PADILLA W J,VIER D,et al.. Composite medium with simultaneously negative permeability and permittivity[J]. Phys. Rev. Lett.,2000,84(18):4184. [40] FEDOTOV V,ROSE M,PROSVIRNIN S,et al.. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Phys. Rev. Lett.,2007,99(14):147401. [41] VALENTINE J,ZHANG S,ZENTGRAF T,et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature,2008,455(7211):376-379. [42] BAENA J D,BONACHE J,MART N F,et al.. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines[J]. Microwave Theory and Techniques,IEEE Transactions on,2005,53(4):1451-1461. [43] ZHOU J,KOSCHNY T,KAFESAKI M,et al.. Saturation of the magnetic response of split-ring resonators at optical frequencies[J]. Phys. Rev. Lett.,2005,95(22):223902. [44] REYNET O,ACHER O. Voltage controlled metamaterial[J]. Appl. Phys. Lett.,2004,84(7):1198-1200. [45] GIL I,GARCIA-GARCIA J,BONACHE J,et al.. Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies[J]. Electronics Letters,2004,40(21):1347-1348. [46] SHADRIVOV I V,KOZYREV A B,van der WEIDE DW,et al.. Tunable transmission and harmonic generation in nonlinear metamaterials[J]. Appl. Phys. Lett.,2008,93(16):161903-161903-161903. [47] LAPINE M,POWELL D,GORKUNOV M,et al.. Structural tunability in metamaterials[J]. Appl. Phys. Lett.,2009,95(8):084105-084105-084103. [48] TAO H,STRIKWERDA A,FAN K,et al.. Reconfigurable terahertz metamaterials[J]. Phys. Rev. Lett.,2009,103(14):147401. [49] FU Y H,LIU A Q,ZHU W M,et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators[J]. Advanced Functional Materials,2011,21(18):3589-3594. [50] PRYCE I M,AYDIN K,KELAITA Y A,et al.. Highly strained compliant optical metamaterials with large frequency tunability[J]. Nano Letters,2010,10(10):4222-4227. [51] LI J,SHAH C M,WITHAYACHUMNANKUL W,et al.. Mechanically tunable terahertz metamaterials[J]. Appl. Phys. Lett.,2013,102(12):121101-121101-121104. [52] LEE S,KIM S,KIM T T,et al.. Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts[J]. Advanced Materials,2012,24(26):3491-3497. [53] PRYCE I M,AYDIN K,KELAITA Y A,et al.. Characterization of the tunable response of highly strained compliant optical metamaterials[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2011,369(1950):3447-3455. [54] AKSU S,HUANG M,ARTAR A,et al.. Flexible plasmonics on unconventional and nonplanar substrates[J]. Advanced Materials,2011,23(38):4422-4430. [55] PADILLA W J,TAYLOR A J,HIGHSTRETE C,et al.. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Phys. Rev. Lett.,2006,96(10):107401. [56] CHEN H-T,O'HARA J F,AZAD A K,et al.. Experimental demonstration of frequency-agile terahertz metamaterials[J]. Nature Photonics,2008,2(5):295-298. [57] CHEN H-T,PADILLA W J,CICH M J,et al.. A metamaterial solid-state terahertz phase modulator[J]. Nature Photonics,2009,3(3):148-151. [58] JUN Y C,GONZALES E,RENO J L,et al.. Active tuning of mid-infrared metamaterials by electrical control of carrier densities[J]. Optics Express,2012,20(2):1903-1911. [59] MIAO X,PASSMORE B,GIN A,et al.. Doping tunable resonance: toward electrically tunable mid-infrared metamaterials[J]. Appl. Phys. Lett.,2010,96(10):101111-101111-101113. [60] JUN Y C,RENO J,RIBAUDO T,et al.. Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures[J]. Nano Letters,2013,13(11):5391-5396. [61] ZHANG F,ZHAO Q,KANG L,et al.. Magnetic control of negative permeability metamaterials based on liquid crystals. Paper presented at:Microwave Conference,2008. EuMC 2008. 38th European2008. [62] BUCHNEV O,WALLAUER J,WALTHER M,et al.. Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial[J]. Appl. Phys. Lett.,2013,103(14):141904. [63] SHREKENHAMER D,CHEN W-C,PADILLA W J. Liquid crystal tunable metamaterial absorber[J]. Phys. Rev. Lett.,2013,110(17):177403. [64] BUCHNEV O,OU J,KACZMAREK M,et al.. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell[J]. Opt. Express,21,2013:1633-1638. [65] MINOVICH A,FARNELL J,NESHEV D N,et al.. Liquid crystal based nonlinear fishnet metamaterials[J]. Appl. Phys. Lett.,2012,100(12):121113-121113-121114. [66] DRISCOLL T,KIM H-T,CHAE B-G,et al.. Memory metamaterials[J]. Science,2009,325(5947):1518-1521. [67] DICKEN M J,AYDIN K,PRYCE I M,et al.. Frequency tunable near-infrared metamaterials based on VO2 phase transition[J]. Opt. Express,2009,17(20):18330-18339. [68] DRISCOLL T,PALIT S,QAZILBASH M M,et al.. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide[J]. Appl. Phys. Lett.,2008,93(2):024101-024103. [69] SAMSON Z,MACDONALD K,De ANGELIS F,et al.. Metamaterial electro-optic switch of nanoscale thickness[J]. Appl. Phys. Lett.,2010,96(14):143105-143105-143103. [70] EGGLETON B J,LUTHER-DAVIES B,RICHARDSON K. Chalcogenide photonics[J]. Nature Photonics,2011,5(3):141-148. [71] WURTZ G A,POLLARD R,HENDREN W,et al.. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality[J]. Nature Nanotechnology,2011,6(2):107-111. [72] REN M,PLUM E,XU J,et al.. Giant nonlinear optical activity in a plasmonic metamaterial[J]. Nature Communications,2012,3:833. [73] ZHU Y,HU X,FU Y,et al.. Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range[J]. Scientific Reports,2013,3:2338. [74] SCHULLER J A,BARNARD E S,CAI W,et al.. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials,2010,9(3):193-204. [75] REN M,JIA B,OU J Y,et al. Nanostructured plasmonic medium for terahertz bandwidth all‐optical switching[J]. Advanced Materials,2011,23(46):5540-5544. [76] LUK'YANCHUK B,ZHELUDEV N I,MAIER S A,et al.. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials,2010,9(9):707-715. [77] DANI K M,KU Z,UPADHYA P C,et al.. Subpicosecond optical switching with a negative index metamaterial[J]. Nano Letters,2009,9(10):3565-3569. [78] NIKOLAENKO A E,PAPASIMAKIS N,ATMATZAKIS E,et al.. Nonlinear graphene metamaterial[J]. Appl. Phys. Lett.,2012,100(18):181109-181109-181103. [79] RAKICH P T,POPOVI,CACUTE M A,et al.. Trapping, corralling and spectral bonding of optical resonances through optically induced potentials[J]. Nature Photonics,2007,1(11):658-665. [80] MARQUARDT F,GIRVIN S. Optomechanics(a brief review)[J]. Physics,2009,2:40. [81] BUTSCH A,KANG M,EUSER T,et al.. Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber[J]. Phys. Rev. Lett.,2012,109(18):183904. [82] ZHANG J,MACDONALD K,ZHELUDEV N. Optical gecko toe:optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces[J]. Physical Review B,2012,85(20):205123. [83] TANG C,WANG Q,LIU F,et al.. Optical forces in twisted split-ring-resonator dimer stereometamaterials[J]. Optics Express,2013,21(10):11783-11793. [84] ZHAO R,TASSIN P,KOSCHNY T,et al.. Optical forces in nanowire pairs and metamaterials[J]. Optics Express,2010,18(25):25665-25676. [85] GINIS V,TASSIN P,SOUKOULIS C M,et al.. Enhancing optical gradient forces with metamaterials[J]. Phys. Rev. Lett.,2013,110(5):057401. [86] VAN THOURHOUT D,ROELS J. Optomechanical device actuation through the optical gradient force[J]. Nature Photonics,2010,4(4):211-217. [87] LAPINE M,SHADRIVOV I V,POWELL D A,et al.. Magnetoelastic metamaterials[J]. Nature Materials,2011,11(1):30-33. [88] LAPINE M,SHADRIVOV I,KIVSHAR Y. Wide-band negative permeability of nonlinear metamaterials[J]. Scientific Eeports,2012,2:412. [89] SLOBOZHANYUK A P,LAPINE M,POWELL D A,et al.. Flexible helices for nonlinear metamaterials[J]. Advanced Materials,2013,25(25):3409-3412. [90] ZHANG J,MACDONALD K F,ZHELUDEV N I. Nonlinear dielectric optomechanical metamaterials[J]. Light Sci. Appl.,08/30/online 2013;2:e96. [91] MANIPATRUNI S,ROBINSON J T,LIPSON M. Optical nonreciprocity in optomechanical structures[J]. Phys. Rev. Lett.,2009,102(21):213903. [92] HAFEZI M,RABL P. Optomechanically induced non-reciprocity in microring resonators[J]. Optics Express,2012,20(7):7672. [93] KANG M,BUTSCH A,RUSSELL P S J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre[J]. Nature Photonics,2011,5(9):549-553. [94] GEIM A K,NOVOSELOV K S. The rise of graphene[J]. Nature Materials,2007,6(3):183-191. [95] NOVOSELOV K,GEIM A K,MOROZOV S,et al.. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438(7065):197-200. [96] LIU M,YIN X,ULIN-AVILA E,et al.. A graphene-based broadband optical modulator[J]. Nature,2011,474(7349):64-67. [97] PAPASIMAKIS N,LUO Z,SHEN Z X,et al.. Graphene in a photonic metamaterial[J]. Opt. Express,2010,18(8):8353-8359. [98] LEE S H,CHOI M,KIM T T,et al.. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials,2012,11(11):936-941. [99] EMANI N K,CHUNG T F,NI X,et al.. Electrically tunable damping of plasmonic resonances with graphene[J]. Nano Letters,2012,12(10):5202-5206. [100] YAO Y,KATS M A,GENEVET P,et al.. Broad electrical tuning of graphene-loaded plasmonic antennas[J]. Nano Letters,2013,13(3):1257-1264. [101] JABLAN M,BULJAN H,SOLJA?I? M. Plasmonics in graphene at infrared frequencies[J]. Physical review B,2009,80(24):245435. [102] CHEN J,BADIOLI M,ALONSO-GONZÁLEZ P,et al.. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature,2012,487(7405):77-81. [103] FEI Z,RODIN A,ANDREEV G,et al.. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature,2012,487(7405):82-85. [104] YAN H,LOW T,ZHU W,et al.. Damping pathways of mid-infrared plasmons in graphene nanostructures[J]. Nature Photonics,2013,7(5):394-399. [105] KOPPENS F H,CHANG D E,GARCIA DE ABAJO F J. Graphene plasmonics:a platform for strong light matter interactions[J]. Nano Letters,2011,11(8):3370-3377. [106] GRIGORENKO A,POLINI M,NOVOSELOV K. Graphene plasmonics[J]. Nature Photonics,2012,6(11):749-758. [107] YAN H,LI X,CHANDRA B,et al.. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology,2012,7(5):330-334. [108] PAPASIMAKIS N,THONGRATTANASIRI S,ZHELUDEV N I,et al.. The magnetic response of graphene split-ring metamaterials[J]. Light:Science Applications,2013,2(7):e78. [109] JU L,GENG B,HORNG J,et al.. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology,2011,6(10):630-634. [110] THONGRATTANASIRI S,KOPPENS F H,DE ABAJO F J G. Complete optical absorption in periodically patterned graphene[J]. Phys. Rev. Lett.,2012,108(4):047401. [111] FANG Z,THONGRATTANASIRI S,SCHLATHER A,et al.. Gated tunability and hybridization of localized plasmons in nanostructured graphene[J]. ACS Nano,2013,7(3):2388-2395. [112] HAND T H,CUMMER S A. Controllable magnetic metamaterial using digitally addressable split-ring resonators[J]. Antennas and Wireless Propagation Letters,IEEE,2009,8:262-265. [113] CHAN W L,CHEN H T,TAYLOR A J,et al.. A spatial light modulator for terahertz beams[J]. Appl. Phys. Lett.,2009,94(21):213511-213511-213513. [114] LIU X,STARR T,STARR A F,et al.. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Phys. Rev. Lett.,2010,104(20):207403. [115] SUN J,TIMURDOGAN E,YAACOBI A,et al.. Large-scale nanophotonic phased array[J]. Nature,2013,493(7431):195-199. [116] HUANG L,CHEN X,BAI B,et al.. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science Applications,2013,2(3):e70. [117] LIN J,MUELLER J B,WANG Q,et al.. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science,2013,340(6130):331-334. [118] SUN S,HE Q,XIAO S,et al.. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials,2012,11(5):426-431. [119] GRADY N K,HEYES J E,CHOWDHURY D R,et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science,2013,340(6138):1304-1307. [120] BONACCORSO F,SUN Z,HASAN T,et al.. Graphene photonics and optoelectronics[J]. Nature Photonics,2010,4(9):611-622. [121] NOVOSELOV K,FAL V,COLOMBO L,et al.. A roadmap for graphene[J]. Nature,2012,490(7419):192-200. [122] LEE S H,CHOI J,KIM H D,et al.. Ultrafast refractive index control of a terahertz graphene metamaterial[J]. Scientific Reports,2013,3:2135. [123] BAO Q,LOH K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano,2012,6(5):3677-3694. [124] SIEGEL P H. Terahertz technology[J]. Microwave Theory and Techniques,IEEE Transactions on,2002,50(3):910-928. [125] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics,2007,1(2):97-105.

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1488) PDF downloads(1520) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return