Volume 7 Issue 1
Jan.  2014
Turn off MathJax
Article Contents
XUE Bin, KONG Xiang-gui, WANG Dan, XIA Lu, LI Xiao-kun, YU Yi, SUN Ya-juan, WU Fei, ZHAO Hui-ying. SERS effect of aggregation of silver nanoprisms induced by 785 nm laser[J]. Chinese Optics, 2014, 7(1): 118-123. doi: 10.3788/CO.20140701.0118
Citation: XUE Bin, KONG Xiang-gui, WANG Dan, XIA Lu, LI Xiao-kun, YU Yi, SUN Ya-juan, WU Fei, ZHAO Hui-ying. SERS effect of aggregation of silver nanoprisms induced by 785 nm laser[J]. Chinese Optics, 2014, 7(1): 118-123. doi: 10.3788/CO.20140701.0118

SERS effect of aggregation of silver nanoprisms induced by 785 nm laser

doi: 10.3788/CO.20140701.0118
  • Received Date: 12 Nov 2013
  • Rev Recd Date: 13 Dec 2013
  • Publish Date: 25 Jan 2014
  • Surface enhanced Raman spectroscopy(SERS) is an ultrasensitive vibrational spectroscopic technique to detect molecules. At present, adding salts is a main way to induce nanoparticles aggregation to get giant enhancement. However, this method needs more procedures and salts may etch nanoparticles. Here an effective and simple method is reported to enhance SERS effect by the aggregation of silver nanoprisms(AgNPRs) induced by 785 nm laser. Silver nanoprisms were prepared by ligand-assisted chemical reductions method. AgNO3 were reduced by NaBH4 in the presence of trisodium citrate, poly(vinylpyrrolidone) and H2O2.The edge of silver nanoprisms is about 80 nm. Surface plasmon band of silver nanoprisms is around 774 nm which could effectively absorb 785 nm laser. When laser irradiating silver nanoprisms during the detection of Raman spectra, these nanoprisms gradually aggregated and SERS spectra of analytes(4-mercaptobenzoic acid, 4-MBA) were gradually enhanced. And enhancement factor of Raman spectra ~109 is obtained by this method. Due to the huge magnitude of SERS in the near infrared region(excitation wavelength 785 nm), this technique has the potential in the field of biochemical tests.

     

  • loading
  • [1] 王二伟, 鱼卫星, 王成, 等. 用表面等离子体共振传感器检测纳米间距[J]. 中国光学, 2013, 6(2):259-266. WANG E W, YU W X, WANG CH, et al.. Nanogap measurement by using surface plasmon resonance sensor[J]. Chinese Optics, 2013, 6(2):259-266.(in Chinese) [2] SU Y H, KE Y F, CAI S L, et al.. Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell[J]. Light:Sci. Appl., 2012, 1(6):e14. [3] 陈泳屹, 佟存柱, 秦莉, 等. 表面等离子体激元纳米激光器技术及应用研究进展[J]. 中国光学, 2012, 5(5):453-463. CHEN Y YI, TONG C ZH, QIN L, et al.. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chinese Optics, 2012, 5(5):453-463.(in Chinese) [4] HUGHES M D, XU Y J, JENKINS P, et al.. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions[J]. Nature, 2005, 437(7062):1132-1135. [5] KNEIPP K, WANG Y, KNEIPP H, et al.. Single molecule detection using surface-enhanced Raman scattering(SERS)[J]. Phys. Rev. Lett., 1997, 78(9):1667-1670. [6] NIE S, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303):1102-1106. [7] WANG Y, YAN B, CHEN L. SERS tags:novel optical nanoprobes for bioanalysis[J]. Chem. Rev., 2012, 113(3):1391-1428. [8] SUN M, ZHANG Z, WANG P, et al.. Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires[J]. Light:Sci. Appl., 2013, 2(11):e112. [9] CAMDEN J P, DIERINGER J A, WANG Y, et al.. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots[J]. J. Am. Chem. Soc., 2008, 130(38):12616-12617. [10] TANG B, XU S, AN J, et al.. Kinetic effects of halide ions on the morphological evolution of silver nanoplates[J]. Phys. Chem. Chem. Phys., 2009, 11(44):10286-10292. [11] 周明辉, 廖春艳, 任兆玉, 等. 表面增强拉曼光谱生物成像技术及其应用[J]. 中国光学, 2013, 6(5):633-642. ZHOU M H, LIAO CH Y, REN ZH Y, et al.. Bioimaging technologies based on surface-enhanced Raman spectroscopy and their applications[J]. Chinese Optics, 2013, 6(5):633-642.(in Chinese) [12] ZHANG Q, LI N, GOEBL J, et al.. A systematic study of the synthesis of silver nanoplates: is citrate a "magic" reagent?[J]. J. Am. Chem. Soc., 2011, 133(46):18931-18939. [13] KELLY K L, CORONADO E, ZHAO L L, et al.. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment[J]. J. Phys. Chem. B., 2003, 107(3):668-677. [14] EL-SAYED I H, HUANG X, EL-SAYED M A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles[J]. Cancer Lett., 2006, 239(1):129-135. [15] LIN X M, CUI Y, XU Y H, et al.. Surface-enhanced Raman spectroscopy: substrate-related issues[J]. Anal. Bioanal. Chem., 2009, 394(7):1729-1745. [16] STILES P L, DIERINGER J A, SHAH N C, et al.. Surface-Enhanced Raman Spectroscopy[J]. Annu. Rev. Anal. Chem., 2008, 1:601-626.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1375) PDF downloads(592) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return