Volume 6 Issue 5
Oct.  2013
Turn off MathJax
Article Contents
DING Wu-chang. Light management in crystalline silicon solar cells[J]. Chinese Optics, 2013, 6(5): 717-728. doi: 10.3788/CO.20130605.0717
Citation: DING Wu-chang. Light management in crystalline silicon solar cells[J]. Chinese Optics, 2013, 6(5): 717-728. doi: 10.3788/CO.20130605.0717

Light management in crystalline silicon solar cells

  • Received Date: 15 Jul 2013
  • Rev Recd Date: 13 Sep 2013
  • Publish Date: 10 Oct 2013
  • Light management is an important factor for high-efficiency crystalline silicon solar cells, which can enhance light absorption to increase a short-circuit current(Jsc). In this contribution, the most common light management methods including antireflection, surface scattering, and light confinement are reviewed. Researchers have developed various surface antireflection structures to lower the surface reflection loss of the cell. For example, biological structures fabricated by moth-eye type texture create a gradient refractive index profile resulting in a reflectance below 1% over a wide wavelength range. As the wafer thickness is reduced gradually, light management becomes even more critical for cell performance. Antireflection for the wide wavelength and incident angle range has attracted much attention. And light scattering and confinement may be the most effective ways to enhance light path length and absorption for thinner substrates.

     

  • loading
  • [1] FISCHER M,METZ A,RAITHEL S. Semi international technology roadmap for photovoltaics(ITRPV)-Challenges in c-Si technology for suppliers and manufacturers[C]//27th European Photovoltaic Solar Energy Conference and Exhibition,Sept.22-23,2012,Frankfurt,Germany,2012. [2] DOU B F,JIA R,LI H F,et al.. Rear surface protection and front surface bi-layer passivation for silicon nanostructure-textured solar cells[J]. J. Physics D:Applied Physics,2013,46:025101. [3] CHEN CH,JIA R,LI H F,et al.. Electrode-contact enhancement in silicon nanowire-array-textured solar cells[J]. Appl. Phys. Lett.,2011,98:143108. [4] ZHANG Y B,PAN M,CHENG X,et al.. Numerical simulation for crystalline silicon solar cells[J]. Chinese J. Luminescence,2012,33(6):660-664.(in Chinese) [5] MACLEOD H A. Thin-Film Optical Filters[M]. 3rd. ed. Bristal. Philadelphia: IOP Publishing Ltd,2006. [6] DING W CH,JIA R,CUI D M. Potential application of silicon-rich-nitride films in silicon solar cells[C]//27th European Photovoltaic Solar Energy Conference and Exhibition,Sept.22-23,2012,Frankfurt,Germany,2012. [7] DING W CH,JIA R,CUI D M,et al.. Light trap design for silicon solar cells with ultra-thin substrate[C]//39th IEEE Photovoltaic Specialist Conference,Jun 16-21,2013,Tampa,FL,USA,2013. [8] SPINELLI P,VERSCHUUREN M A,POLMAN A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators[J]. Nature Communications,2012,3:692. [9] CHHAJED S,SCHUBERT M F,KIM J K,et al.. Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics[J]. Appl. Phys. Lett.,2008,93:251108. [10] XI J Q,SCHUBERT M F,KIM J K,et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection[J]. Nature Photonics,2007,1:176-179. [11] KUO M L,POXSON D J,KIM Y S,et al.. Realization of a near-perfect antireflection coating for silicon solar energy utilization[J]. Optics Lett.,2008,33:2527-2529. [12] NAYAK B K,LYENGAR V V,GUPTA M C. Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures[J]. Progress in Photovoltaics,2007,19:631-639. [13] BISWAS R,XU CH. Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit[J]. Opt. Express,2011,19:664-672. [14] NISHIOKA K,SUETO T,SAITO N. Formation of antireflection nanostructure for silicon solar cells using catalysis of single nano-sized particle[J]. Appl. Surface Science,2009,255:9504-9507. [15] PENG K Q,LU A J,ZHANG R Q,et al.. Motility of metal nanoparticles in silicon and induced anisotropic silicon etching[J]. Advanced Functional Materials,2008,18:3026-3055. [16] WAGNER R S,ELLIS W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Appl. Phys. Lett.,1964,4:89-90. [17] CHEN Q,HUBBARD G,SHIELDS P A,et al. Broadband moth-eye antireflection coatings fabricated by low cost nanoimprinting[J]. Appl. Phys. Lett.,2009,94:263118. [18] KANAMORI Y,HANE K,SAI H,et al.. 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask[J]. Appl. Phys. Lett.,2001,78:142. [19] SAI H,FUJII H,ARAFUNE K,et al.. Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks[J]. Appl. Phys. Lett.,2006,88:201116. [20] KIM Y CH,DO Y R. Nanohole-templated organic light-emitting diodes fabricated using laser-interfering lithography:moth-eye lighting[J]. Opt. Express,2005,13:1598-1603. [21] LI X CH,LI J SH,CHEN T,et al.. Periodically aligned Si nanopillar arrays as efficient antireflection layers for solar cell applications[J]. Nanoscale Research Lett.,2010,5:1721-1726. [22] WANG K X Z,YU Z F,LIU V,et al.. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings[J]. Nano Letters,2012,12:1616-1619. [23] TSAI M A,TSENG P CH,CHEN H CH,et al.. Enhancement conversion efficiency of a crystalline silicon solar cell with frustum nanorod arryas[J]. Opt. Express,2011,19:28-34. [24] HUANG Z,FANG H,ZHU J. Fabrication of silicon nanowoire arrays with controlled diameter, length, and density[J]. Advance Materials,2007,19:744. [25] CHOI W K,LIEW T H,DAWOOD M K. Synthesis of nanofin arrays using interference lithography and catalytic etching[J]. Nano Letters,2008,8:3799. [26] HUANG ZH P,GEYER N,WRENER P,et al.. Metal-assisted chemical etching of silicon: a review[J]. Advanced Materials,2011,23:285-308. [27] PENG K Q,ZHANG M L,LU A J,et al. Ordered nanowire arrays via nanospere lithography and metal-induced etching[J]. Appl. Phys. Lett.,2007,90:163123. [28] YUE H H,JIA R,CHEN CH,et al.. Antireflection properties and solar cell application of silicon nanostructures[J]. J. Vacuum Science and Technology B,2011,29:1071-1023. [29] GRZELA G,HOURLIER D,RIVAS J G. Polarization-dependent light extinction in ensembles of polydisperse vertical semiconductor nanowires:a Mie scattering effective medium[J]. Physics Review B,2012,86:045305. [30] BODEN S A,BAGNALL D M. Tunable reflection minima of nanostructured antireflective surfaces[J]. Appl. Phys. Lett.,2008,93:133108. [31] GREEN M A. Lambertian light trapping in textured solar cells and light-emitting diodes:analytical solutions[J]. Progress in Photovoltaics:Research and Appl.,2002,10:235-241. [32] LEI J G,LIU T H,LIN J Q,et al.. New applications of surface plasmon polaritons[J]. Chinese J. Optics and Appl. Optics,2010,3:432-439. [33] PILLAI S,CATCHPOLE K R,TRUPKE T,et al.. Surface plasmon enhanced silicon solar cells[J]. J. Appl. Phys.,2007,101:093105. [34] MATHEU P,LIM S H,DERKACS D,et al.. Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices[J]. Appl. Phys. Lett.,2008,93:113108. [35] SHEN H J,LU H D,CHENG X ZH. Back reflectors of thin-film silicon solar cells consisting of one-dimensional diffraction gratings and one-dimensional photonic crystal[J]. Chinese J. Luminescence,2012,33(6):633-639.(in Chinese) [36] HEINE C,MORF R H. Submicrometer gratings for solar energy applications[J]. Appl. Optics,1995,34:2476-2482. [37] ZENG L,YI Y,HONG C,et al.. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector[J]. Appl. Phys. Lett.,2006,89:111111. [38] BERK F J,POLMAN A,CATCHPOLE K R. Tunable light trapping for solar cells using localized surface plasmons[J]. J. Appl. Phys.,2009,105:114310. [39] VOGT M R,ALTERMATT P P,BRENDEL R. Optimization of metallic nanoparticles for plasmon-enhanced scattering at the rear of c-Si solar cells[C]//27th European Photovoltaic Solar Energy conference and Exhibition,Sept.22-23,2012,Frankfurt,Germany,2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2298) PDF downloads(729) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return