Volume 6 Issue 4
Aug.  2013
Turn off MathJax
Article Contents
LIU Zhi, LI Chuan-bo, XUE Chun-lai, CHENG Bu-wen. Progress in Ge/Si heterostructures for light emitters[J]. Chinese Optics, 2013, 6(4): 449-456. doi: 10.3788/CO.20130604.0449
Citation: LIU Zhi, LI Chuan-bo, XUE Chun-lai, CHENG Bu-wen. Progress in Ge/Si heterostructures for light emitters[J]. Chinese Optics, 2013, 6(4): 449-456. doi: 10.3788/CO.20130604.0449

Progress in Ge/Si heterostructures for light emitters

doi: 10.3788/CO.20130604.0449
  • Received Date: 14 Apr 2013
  • Rev Recd Date: 17 Jun 2013
  • Publish Date: 10 Aug 2013
  • Due to the compatibility of Si-based light emitters with Si CMOS processes, Ge/Si heterostructures based light emitters have developed significantly. This paper reviews the most recent progress of this field, including Ge/Si Quantum Dot(QD) Light Emitting Diode(LED), Ge light emitting diode on Si, Ge laser on Si, and Ge/SiGe Multiple Quantum Well(MQW) light emitting diode. It describes the characteristics of these light emitting devices and how to enhance their luminescent properties. Finally, it discusses the challenges and opportunities associated with these approaches and suggests that much innovation should be promoted in material and device structures.


  • loading
  • [1] PANICCIA M. Integrating silicon photonics[J]. Nature Photonics,2010,4:498-499. [2] REED G T. Device physics:the optical age of silicon[J]. Nature,2004,427(6975):595-596. [3] IYER S S,XIE Y H. Light emission from silicon[J]. Science,1993,260(5104):40-46. [4] GREEN M A,ZHAO J,WANG A,et al.. Efficient silicon light-emitting diodes[J]. Nature,2001,412:805-808. [5] NG W L,LOURENCO M A,GWILLIAM R M,et al.. An efficient room-temperature silicon-based light-emitting diode[J]. Nature,2001,410:192-195. [6] RONG H,JONES R,LIU A,et al.. A continuous-wave Raman silicon laser[J]. Nature,2005,433:725-728. [7] RONG H,LIU A,JONES R,et al.. An all-silicon Raman laser[J]. Nature,2005,433:292-294. [8] JONES R,PARK H D,FANG A W,et al.. Hybrid silicon integration[J]. J. Materials Science: Materials in Electronics,2009,20(1):3-9. [9] LIU H,WANG T,JIANG Q,et al., Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate[J]. Nature Photonics,2011,5(7):416-419. [10] CULLIS A G,CANHAM L T. Visible light emission due to quantum size effects in highly porous crystalline silicon[J]. Nature,1991,353(6342):335-338. [11] THEWALT M L W,HARRISON D A,REINHART C F,et al.. Type II band alignment in Si1-xGex/Si(001) quantum wells:yhe ubiquitous type I luminescence results from band bending[J]. Physical Rwview Lett.,1997,79(2):269-272. [12] BRUNHES T,BOUCAUD P,SAUVAGE S,et al.. Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition[J]. Appl. Phys. Lett.,2000,77(12):1822-1824. [13] CHANG W H,CHOU A T,CHEN W Y,et al.. Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots[J]. Appl. Phys. Lett.,2003,83(14):2958-2960. [14] STOFFEL M,DENKER U,SCHMIDT O G. Electroluminescence of self-assembled Ge hut clusters[J]. Appl. Phys. Lett.,2003,82(19):3236-3238. [15] JINSONG X,TAKEDA Y,USAMI N,et al.. Room-temperature electroluminescence from Si microdisks with Ge quantum dots[J]. Optics Express,2010,18(13):13945-13950. [16] XU X,TSUBOI T,CHIBA T,et al.. Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities[J]. Optics Express,2012,20(13):14714-14721. [17] SCHMIDT O G,LANGE C,EBERL K. Photoluminescence study of the initial stages of island formation for Ge pyramids/domes and hut clusters on Si(001)[J]. Appl. Phys. Lett.,1999,75(13):1905-1907. [18] DAS S,DAS K,SINGHA R,et al.. Improved infrared photoluminescence characteristics from circularly ordered self-assembled Ge islands[J]. Nanoscale Research Lett.,2011,6(1):416. [19] SHI W H,LI C B,LUO L P,et al.. Growth of Ge quantum dot mediated by boron on Ge wetting layer[J]. J. Crystal Growth,2005,279(3-4):329-334. [20] LIU Z,CHENG B,HU W,et al.. Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature[J]. Nanoscale Research Lett.,2012,7(1):383. [21] YAKIMOV A I,BLOSHKIN A A,TIMOFEEV V A,et al.. Effect of overgrowth temperature on the mid-infrared response of Ge/Si(001) quantum dots[J]. Appl. Phys. Lett.,2012,100(5):053507. [22] LIU Z,HU W,SU S,et al.. Enhanced photoluminescence and electroluminescence of multilayer GeSi islands on Si(001) substrates by phosphorus-doping[J]. Optics Express,2012,20(20):22327-22333. [23] LUAN H C,LIM D R,LEE K K,et al.. High-quality Ge epilayers on Si with low threading-dislocation densities[J]. Appl. Phys. Lett.,1999,75(19):2909-2911. [24] LIU J,SUN X,PAN D,et al.. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si[J]. Optics Express,2007,15(18):11272-11277. [25] LIU J F,CANNON D D,WADA K,et al.. Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100)[J]. Physical Review B,2004,70(15):155309. [26] CHENG T H,PENG K L,KO C Y,et al.. Strain-enhanced photoluminescence from Ge direct transition[J]. Appl. Phys. Lett.,2010,96(21):429085. [27] JAIN J R,HRYCIW A,BAER T M,et al.. A micromachining-based technology for enhancing germanium light emission via tensile strain[J]. Nature Photonics,2012,6(6):398-405. [28] LIM P H,PARK S,ISHIKAWA Y,et al.. Enhanced direct bandgap emission in germanium by micromechanical strain engineering[J]. Optics Express,2009,17(18):16358-16365. [29] XIAOCHEN S,JIFENG L,KIMERLING L C,et al.. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si[J]. Appl. Phys. Lett.,2009,95(1):011911. [30] CHENG S-L,LU J,SHAMBAT G,et al.. Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate[J]. Optics Express,2009,17(12):10019-10024. [31] HU W,CHENG B,XUE C,et al., Electroluminescence from Ge on Si substrate at room temperature[J]. Appl. Phys. Lett.,2009,95(9):092102. [32] SVESS M J,CARROLL L,SIGG H,et al.. Tensile strained Ge quantum wells on Si substrate: Post-growth annealing versus low temperature re-growth[J]. Materials Science and Engineering:B,2012,177(10):696-699. [33] SUN X C,LIU J F,KIMERLING L C,et al.. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes[J]. Optics Letters,2009,34(8):1198-1200. [34] LIU J F,SUN X C,KIMERLING L C,et al.. Direct-gap optical gain of Ge on Si at room temperature[J]. Optics Lett.,2009,34(11):1738-1740. [35] LIU J,SUN X,CAMACHO-AGUILERA R,et al.. Ge-on-Si laser operating at room temperature[J]. Optics Lett.,2010,35(5):679-681. [36] CAMACHO-AGUILERA R E,CAI Y,PATEL N,et al.. An electrically pumped germanium laser[J]. Optics Express,2012,20(10):11316-11320. [37] CAMACHO-AGUILERA R E,CAI Y,BESSETTE J T,et al.. High active carrier concentration in n-type, thin film Ge using delta-doping[J]. Optics Materials Express,2012,2(11):1462-1469. [38] KUO Y-H,LEE Y K,GE Y,et al.. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon[J]. Nature,2005,437(7063):1334-1336. [39] CHEN Y H,LI C,ZHOU Z W,et al.. Room temperature photoluminescence of tensile-strained Ge/Si0.13Ge0.87 quantum wells grown on silicon-based germanium virtual substrate[J]. Appl. Phys. Lett.,2009,94(14):141902. [40] CHAISAKUL P,MARRIS-MORINI D,ISELLA G,et al.. Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide[J]. Appl. Phys. Lett.,2011,99(14):141106. [41] WU P H,DUMCENCO D,HUANG Y S,et al.. Above-room-temperature photoluminescence from a strain-compensated Ge/Si0.15Ge0.85 multiple-quantum-well structure[J]. Appl. Phys. Lett.,2012,100(14):141905. [42] LIU Z,HU W,LI C,et al.. Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells[J]. Appl. Phys. Lett.,2012,101(23):231108.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2589) PDF downloads(532) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint