Turn off MathJax
Article Contents
CAO Zhi-rui. Dynamic 3D measurement error compensation technology based on phase-shifting and fringe projection[J]. Chinese Optics. doi: 10.37188/CO.EN.2022-0004
Citation: CAO Zhi-rui. Dynamic 3D measurement error compensation technology based on phase-shifting and fringe projection[J]. Chinese Optics. doi: 10.37188/CO.EN.2022-0004

Dynamic 3D measurement error compensation technology based on phase-shifting and fringe projection

doi: 10.37188/CO.EN.2022-0004
Funds:  Supported by this paper is supported by the natural science foundation of Jilin Province, and the award number is 20200201008JC.
More Information
  • Author Bio:

    CAO Zhi-rui (1983—), PhD, Associate Professor, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. His research interests are on Optical measurement techniques. E-mail: caozhirui@ciomp.ac.cn

  • Corresponding author: caozhirui@ciomp.ac.cn
  • Received Date: 10 Mar 2022
  • Accepted Date: 23 May 2022
  • Available Online: 01 Sep 2022
  • In the process of dynamic 3D measurement based on phase-shifting and fringe projection, the ideal correspondence between object points, image points and phases in different fringe images is destroyed. On this condition, the application of traditional phase formulas will produce significant measurement errors. In order to reduce the dynamic 3D measurement error, the basic principle of the error is firstly analyzed, and the errors are equivalent to the phase-shifting errors between different fringe images. Then, a dynamic 3D measurement error compensation method is proposed, and this method combines the advanced iterative algorithm based on least squares and the improved Fourier assisted phase-shifting method to realize the high-precision calculation of random step-size phase-shifting and phase. The actual measurement results of a precision ground aluminum plate show that the dynamic 3D measurement error compensation technology can reduce the mean square errors of dynamic 3D measurement by more than one order of magnitude, and the dynamic 3D measurement accuracy after compensation can be better than 0.15mm.

     

  • loading
  • [1]
    MEZA J, CONTRERAS-ORTIZ S H, PEREZ L A R, et al. Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light[J]. Optical Engineering, 2021, 60(5): 054106.
    [2]
    HE H H, YUAN J J, HE J Z, et al. Measurement of 3D shape of cable sealing layer based on structured light binocular vision[J]. Proceedings of SPIE, 2021, 11781: 117811L.
    [3]
    SUN C R, ZHANG X Y. Real-time subtraction-based calibration methods for deformation measurement using structured light techniques[J]. Applied Optics, 2019, 58(28): 7727-7732. doi: 10.1364/AO.58.007727
    [4]
    XU M, LU X X, HUANG H M, et al. Dual surface structured light vision system based on multidimensional parameter coding[J]. Applied Optics, 2019, 58(26): 7212-7221. doi: 10.1364/AO.58.007212
    [5]
    CAO ZH R, JIANG H B. Encoding technology of an asymmetric combined structured light for 3D measurement[J]. Applied Optics, 2020, 59(33): 10253-10263. doi: 10.1364/AO.400307
    [6]
    HA M, XIAO CH Y, PHAM D, et al. Complete grid pattern decoding method for a one-shot structured light system[J]. Applied Optics, 2020, 59(9): 2674-2685. doi: 10.1364/AO.381149
    [7]
    ELAHI A, LU J, ZHU Q D, et al. A single-shot, pixel encoded 3D measurement technique for structure light[J]. IEEE Access, 2020, 8: 127254-127271. doi: 10.1109/ACCESS.2020.3009025
    [8]
    YE W ZH, ZHONG X P, DENG Y L. 3D measurement using a binocular cameras-projector system with only one shot[C]. 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), IEEE, 2019.
    [9]
    HUANG X Y, ZHANG Y Y, XIONG ZH W. High-speed structured light based 3D scanning using an event camera[J]. Optics Express, 2021, 29(22): 35864-35876. doi: 10.1364/OE.437944
    [10]
    LYU C Y, LI P, WANG D CH, et al. High-speed optical 3D measurement sensor for industrial application[J]. IEEE Sensors Journal, 2021, 21(10): 11253-11261. doi: 10.1109/JSEN.2020.3006566
    [11]
    ZHANG S. High-speed 3D shape measurement with structured light methods: A review[J]. Optics and Lasers in Engineering, 2018, 106: 119-131.
    [12]
    GAO H, TAKAKI T, ISHII I. GPU-based real-time structured light 3D scanner at 500 fps[J]. Proceedings of SPIE, 2012, 8437: 84370J. doi: 10.1117/12.922568
    [13]
    LIU Y J, GAO H, GU Q Y, et al. . A fast 3-D shape measurement method for moving object[C]. 2014 IEEE International Conference on Progress in Informatics and Computing, IEEE, 2014.
    [14]
    WEISE T, LEIBE B, VAN GOOL L. Fast 3D scanning with automatic motion compensation[C]. 2007 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007.
    [15]
    CONG P Y, XIONG ZH W, ZHANG Y Y, et al. Accurate dynamic 3D sensing with Fourier-assisted phase shifting[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(3): 396-408. doi: 10.1109/JSTSP.2014.2378217
    [16]
    QIAN K M, WANG H X, GAO W J. Windowed Fourier transform for fringe pattern analysis: theoretical analyses[J]. Applied Optics, 2008, 47(29): 5408-5419. doi: 10.1364/AO.47.005408
    [17]
    STOILOV G, DRAGOSTINOW T. Phase stepping interferometry: Five-frame algorithm with an arbitrary step[J]. Optics and Lasers in Engineering, 1997, 28(1): 61-69. doi: 10.1016/S0143-8166(96)00048-6
    [18]
    GREIVENKAMP J E. Generalized data reduction for heterodyne interferometry[J]. Optical Engineering, 1984, 23(4): 234350.
    [19]
    WANG ZH Y, HAN B. Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms[J]. Optics Letters, 2004, 29(14): 1671-1673. doi: 10.1364/OL.29.001671
    [20]
    LI J, GUAN J T, DU H, et al. Error self-correction method for phase jump in multi-frequency phase-shifting structured light[J]. Applied Optics, 2021, 60(4): 949-958. doi: 10.1364/AO.413506
    [21]
    YANG D, QIAO D Y, XIA CH F. Curved light surface model for calibration of a structured light 3D modeling system based on striped patterns[J]. Optics Express, 2020, 28(22): 33240-33253. doi: 10.1364/OE.408444
    [22]
    WANG SH SH, LIANG J, LI X, et al. A calibration method on 3D measurement based on structured-light with single camera[J]. Proceedings of SPIE, 2020, 11434: 114341H.
    [23]
    MARRUGO A, VARGAS R, ZHANG S, et al. Hybrid calibration method for improving 3D measurement accuracy of structured light systems[J]. Proceedings of SPIE, 2020, 11490: 1149008.
    [24]
    ZHANG ZH Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. doi: 10.1109/34.888718
    [25]
    HAN J, XU C P, ZHANG CH L, et al. An algorithm combining the branch-cut method and rhombus phase unwrapping algorithm[J]. Journal of Physics:Conference Series, 2020, 1634: 012068. doi: 10.1088/1742-6596/1634/1/012068
    [26]
    DU G L, WANG M M, ZHOU C L, et al. A simple spatial domain algorithm to increase the residues of wrapped phase maps[J]. Journal of Modern Optics, 2017, 64(3): 231-237. doi: 10.1080/09500340.2016.1229502
    [27]
    LIU X R, KOFMAN J. Real-time 3D surface-shape measurement using background-modulated modified Fourier transform profilometry with geometry-constraint[J]. Optics and Lasers in Engineering, 2019, 115: 217-224. doi: 10.1016/j.optlaseng.2018.11.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(52) PDF downloads(100) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return