Volume 15 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
SUN Hui-jie, HOU Shang-lin, LEI Jing-li. Investigation of stimulated Brillouin scattering in As2S3 photonic crystal fibers at the mid-infrared waveband[J]. Chinese Optics, 2022, 15(4): 835-844. doi: 10.37188/CO.EN.2022-0003
Citation: SUN Hui-jie, HOU Shang-lin, LEI Jing-li. Investigation of stimulated Brillouin scattering in As2S3 photonic crystal fibers at the mid-infrared waveband[J]. Chinese Optics, 2022, 15(4): 835-844. doi: 10.37188/CO.EN.2022-0003

Investigation of stimulated Brillouin scattering in As2S3 photonic crystal fibers at the mid-infrared waveband

doi: 10.37188/CO.EN.2022-0003
Funds:  Supported by National Natural Science Foundation of China (No. 61665005); HongLiu First-class Disciplines Development Program of Lanzhou University of Technology
More Information
  • Author Bio:

    SUN Huijie (1997—), male, was born in Zibo, Shandong province. He received his bachelor’s degree from Shandong University of Science and Technology in 2019. His research interests are on stimulated Brillouin scattering in mid-infrared fibers. E-mail: sunhj1997@foxmail.com

    HOU Shanglin (1970—), male, was born in Tianshui, Gansu province. He received his Ph.D degree from Beijing University of Posts and Telecommunications in 2008. Currently, he is a professor in  School of Science on Lanzhou University of Technology. His research interests are on optical information transmission and fiber optic communication. E-mail: houshanglin@vip.163.com

  • Corresponding author: houshanglin@vip.163.com
  • Received Date: 23 Feb 2022
  • Accepted Date: 08 Apr 2022
  • Rev Recd Date: 08 Apr 2022
  • Available Online: 03 May 2022
  • Stimulated Brillouin scattering in As2S3 photonic crystal fibers was investigated at wavelengths of 2 μm to 6 μm by the finite element method. The numerical results indicate that the proposed photonic crystal fiber can maintain single-mode operation when the air filling factor is less than 0.6. The Brillouin frequency shift is mainly influenced by the pump wavelength and fiber structure. The Brillouin frequency shift decreases by 4.16 GHz when the pump wavelength is increased from 2 μm to 6 μm, while the Brillouin frequency shift changes by the order of megahertz when the rate of air filling increases from 0.5 to 0.6. The FWHM of the Brillouin gain spectrum depends on the phonon lifetime, and the FWHM of the Brillouin gain spectrum is nine times wider at a pump wavelength of 2 μm than that at a pump wavelength of 6 μm. The maximum Brillouin gain of the proposed fibers with air filling fractions of 0.5 and 0.6 are 2.413×10−10 m/W and 2.429×10−10 m/W, respectively. The Brillouin threshold is positively correlated with the pump wavelength for the same effective fiber length, and is 27.8% and 19.6% larger at a pump wavelength of 6 μm than that at 2 μm with air fill factors of 0.5 and 0.6, respectively. The numerical results are of great significance for the design and fabrication of optical devices or optical sensors based on the proposed fibers in the mid-infrared band.


  • loading
  • [1]
    GUAN X, SHI W, RUSCH L A. Ultra-dense wavelength-division multiplexing with microring modulator[J]. Journal of Lightwave Technology, 2021, 39(13): 4300-4306. doi: 10.1109/JLT.2021.3070515
    LUBANA A, KAUR S, MALHOTRA Y. Performance optimization of a super-dense wavelength division multiplexing system employing a Raman + erbium–ytterbium doped fiber hybrid optical amplifier[J]. Journal of Optical Technology, 2021, 88(6): 308-314. doi: 10.1364/JOT.88.000308
    MA Z Y, WU Q Q, LI Q H, et al. Ultra-dense wavelength division multiplexing passive optical network[J]. Laser &Optoelectronics Progress, 2021, 58(5): 0500006. (in Chinese)
    ZHANG CH J, GAO M Y, SHI Y, et al. Experimental comparison of orthogonal frequency division multiplexing and universal filter multi-carrier transmission[J]. Journal of Lightwave Technology, 2021, 39(22): 7052-7060. doi: 10.1109/JLT.2021.3113388
    XU X Y, YUE D W. Orthogonal frequency division multiplexing modulation techniques in visible light communication[J]. Chinese Optics, 2021, 14(3): 516-527. (in Chinese) doi: 10.37188/CO.2020-0051
    ZHU K, ZHOU B, WU H, et al. Multipath distributed acoustic sensing system based on phase-sensitive optical time-domain reflectometry with frequency division multiplexing technique[J]. Optics and Lasers in Engineering, 2021, 142: 106593. doi: 10.1016/j.optlaseng.2021.106593
    WU SH Z, WEN H Q, CHEN X H. Method for reducing the influence of crosstalk on quasi-distributed sensing network with time-division multiplexing fibre Bragg gratings[J]. Journal of Physics:Conference Series, 2021, 1754: 012212. doi: 10.1088/1742-6596/1754/1/012212
    PEI L, LI ZH Q, WANG J SH, et al. Review on gain equalization technology of fiber amplifier using space division multiplexing[J]. Acta Optica Sinica, 2021, 41(1): 0106001. (in Chinese) doi: 10.3788/AOS202141.0106001
    PUTTNAM B J, RADEMACHER G, LUÍS R S. Space-division multiplexing for optical fiber communications[J]. Optica, 2021, 8(9): 1186-1203. doi: 10.1364/OPTICA.427631
    DEROH M, BEUGNOT J C, HAMMANI K, et al. Comparative analysis of stimulated Brillouin scattering at 2  µm in various infrared glass-based optical fibers[J]. Journal of the Optical Society of America B, 2020, 37(12): 3792-3800. doi: 10.1364/JOSAB.401252
    WANG X, ZHOU P, WANG X L, et al. Tunable slow light via stimulated Brillouin scattering at 2 μm based on Tm-doped fiber amplifiers[J]. Optics Letters, 2015, 40(11): 2584-2587. doi: 10.1364/OL.40.002584
    TAO G M, EBENDORFF-HEIDEPRIEM H, STOLYAROV A M, et al. Infrared fibers[J]. Advances in Optics and Photonics, 2015, 7(2): 379-458. doi: 10.1364/AOP.7.000379
    ALIMAGHAM F, WINTERBURN J, DOLMAN B, et al. Real-time bioprocess monitoring using a mid-infrared fibre-optic sensor[J]. Biochemical Engineering Journal, 2021, 167: 107889. doi: 10.1016/j.bej.2020.107889
    WANG H Y, BAKER C, CHEN L, et al. Stimulated Brillouin scattering in high-birefringence elliptical-core As2Se3-PMMA microfibers[J]. Optics Letters, 2021, 46(5): 945-948. doi: 10.1364/OL.418137
    CHEN X Y, YAN X, ZHANG X N, et al. Theoretical investigation of mid-infrared temperature sensing based on four-wave mixing in a CS2-filled GeAsSeTe microstructured optical fiber[J]. IEEE Sensors Journal, 2021, 21(9): 10711-10718. doi: 10.1109/JSEN.2021.3061654
    CARCREFF J, CHEVIRÉ F, GALDO E, et al. Mid-infrared hollow core fiber drawn from a 3D printed chalcogenide glass preform[J]. Optical Materials Express, 2021, 11(1): 198-209. doi: 10.1364/OME.415090
    XU Q, GAO W Q, LI X, et al. Investigation on optical and acoustic fields of stimulated Brillouin scattering in As2S3 suspended-core microstructured optical fibers[J]. Optik, 2017, 133: 51-59. doi: 10.1016/j.ijleo.2017.01.003
    FLOREA C, BASHKANSKY M, DUTTON Z, et al. Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers[J]. Optics Express, 2006, 14(25): 12063-12070. doi: 10.1364/OE.14.012063
    VANI P, VINITHA G, NASEER K A, et al. Thulium-doped barium tellurite glasses: structural, thermal, linear, and non-linear optical investigations[J]. Journal of Materials Science:Materials in Electronics, 2021, 32(18): 23030-23046. doi: 10.1007/s10854-021-06787-5
    DEROH M, BEUGNOT J C, KIBLER B, et al. . Stimulated Brillouin scattering in Germanium-doped-core optical fibers up to 98% mol doping level[C]. Proceedings of Specialty Optical Fibers 2018, Optica Publishing Group, 2018: SoTu3G. 2.
    LAMBIN-IEZZI V, LORANGER S, SAAD M, et al. Stimulated Brillouin scattering in SM ZBLAN fiber[J]. Journal of Non-Crystalline Solids, 2013, 359: 65-68. doi: 10.1016/j.jnoncrysol.2012.10.004
    SHINKAWA K, ODA Y, MA Z T, et al. Transient stimulated brillouin scattering in multimode As2S3 glass fiber[J]. Japanese Journal of Applied Physics, 2009, 48(7R): 070215.
    DIOUF M, TRICHLLI A, ZGHAL M. Stimulated Brillouin scattering-based slow light using singlemode As2S3 chalcogenide photonic crystal fiber for temperature sensing[C]. Proceedings of Frontiers in Optics 2019, Optica Publishing Group, 2019: JTu3A. 63.
    RODNEY W S, MALITSON I H, KING T A. Refractive index of arsenic trisulfide[J]. Journal of the Optical Society of America, 1958, 48(9): 633-636. doi: 10.1364/JOSA.48.000633
    WIEDERHECKER G S, DAINESE P, MAYER ALEGRE T P. Brillouin optomechanics in nanophotonic structures[J]. APL Photonics, 2019, 4(7): 071101. doi: 10.1063/1.5088169
    TIMOSHENKO S P, GOODIER J N. Theory of Elasticity[M]. New York: McGraw-Hill, 1970.
    DEMIR H, OZSOY S. Solid-core square-lattice photonic crystal fibers: comparative studies of the single-mode regime and numerical aperture for circular and square air-holes[J]. Optical and Quantum Electronics, 2011, 42(14): 851-862.
    DASGUPTA S, POLETTI F, LIU SH, et al. Modeling brillouin gain spectrum of solid and microstructured optical fibers using a finite element method[J]. Journal of Lightwave Technology, 2011, 29(1): 22-30. doi: 10.1109/JLT.2010.2091106
    AGRAWAL G P. Nonlinear Fiber Optics[M]. 4th ed. Amsterdam: Academic Press, 2007.
    OGUSU K, LI H P, KITAO M. Brillouin-gain coefficients of chalcogenide glasses[J]. Journal of the Optical Society of America B, 2004, 21(7): 1302-1304. doi: 10.1364/JOSAB.21.001302
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views(198) PDF downloads(89) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint