Turn off MathJax
Article Contents
LIU Bin, CAO Zhi-gang, WANG Xing-yun, LIN Zi-han, CHENG Rui, LIU Jun, SUN Yu-han, ZHENG Shu-jun, ZUO Cheng, LIN Ji-ping. Demodulation of Vernier-effect-based optical fiber strain sensor by using improved cross-correlation algorithm[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0024
Citation: LIU Bin, CAO Zhi-gang, WANG Xing-yun, LIN Zi-han, CHENG Rui, LIU Jun, SUN Yu-han, ZHENG Shu-jun, ZUO Cheng, LIN Ji-ping. Demodulation of Vernier-effect-based optical fiber strain sensor by using improved cross-correlation algorithm[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0024

Demodulation of Vernier-effect-based optical fiber strain sensor by using improved cross-correlation algorithm

cstr: 32171.14.CO.EN-2025-0024
Funds:  This work is supported by National Natural Science Foundation of China (No. 61605001); National Key R & D Program of China under Grant (No. 2016YFC0301900 and No. 2016YFC0301901); The Young Core Teacher Foundation of Anhui University and Anhui Provincial Natural Science Foundation (No. 1408085QF135)
More Information
  • Author Bio:

    LIU Bin (1996—) received the B.S. degree in optoelectronic information science and engineering from Anhui University, Hefei, China, in 2020. His current research interests include optic fiber sensing. E-mail: 2940271455@qq.com

    CAO Zhi-gang (1981—) received his Ph.D. in Physics and Electronics from Anhui University in 2015. Currently mainly engaged in research related to fiber sensors and fiber lasers. E-mail: caozhigang@ahu.edu.cn

  • Corresponding author: caozhigang@ahu.edu.cn
  • Received Date: 27 Mar 2025
  • Accepted Date: 19 May 2025
  • Available Online: 01 Jul 2025
  • The improved cross-correlation algorithm for the strain demodulation of Vernier-effect-based optical fiber sensor (VE-OFS) is proposed in this article. The algorithm identifies the most similar spectrum to the measured one from the database of the collected spectra by employing the cross-correlation operation, subsequently deriving the predicted value via weighted calculation. As the algorithm uses the complete information in the measured raw spectrum, more accurate results and larger measurement range can be obtained. Additionally, the improved cross-correlation algorithm also has the potential to improve the measurement speed compared to current standards due to the possibility for the collection using low sampling rate. This work presents an important algorithm towards a simpler, faster way to improve the demodulation performance of VE-OFS.

     

  • loading
  • [1]
    XU R R, LIU S, SUN Q ZH, et al. Experimental characterization of a Vernier strain sensor using cascaded fiber rings[J]. IEEE Photonics Technology Letters, 2012, 24(23): 2125-2128. doi: 10.1109/LPT.2012.2222369
    [2]
    LIU Y X, LI X G, ZHANG Y N, et al. Fiber-optic sensors based on Vernier effect[J]. Measurement, 2021, 167: 108451. doi: 10.1016/j.measurement.2020.108451
    [3]
    GOMES A D, BARTELT H, FRAZÃO O. Optical Vernier effect: recent advances and developments[J]. Laser & Photonics Reviews, 2021, 15(7): 2000588.
    [4]
    ZHANG P, TANG M, GAO F, et al. Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field[J]. Optics Express, 2014, 22(16): 19581-19588. doi: 10.1364/OE.22.019581
    [5]
    ZHAO Y F, DAI M L, CHEN ZH M, et al. Ultrasensitive temperature sensor with Vernier-effect improved fiber Michelson interferometer[J]. Optics Express, 2021, 29(2): 1090-1101. doi: 10.1364/OE.415857
    [6]
    ZHANG P, TANG M, GAO F, et al. Simplified hollow-core fiber-based Fabry–Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement[J]. IEEE Photonics Journal, 2015, 7(1): 7100210.
    [7]
    GOMES A D, BECKER M, DELLITH J, et al. Multimode Fabry–Perot interferometer probe based on Vernier effect for enhanced temperature sensing[J]. Sensors, 2019, 19(3): 453. doi: 10.3390/s19030453
    [8]
    ROBALINHO P M R, GOMES A D, FRAZÃO O. High enhancement strain sensor based on Vernier effect using 2-fiber loop mirrors[J]. IEEE Photonics Technology Letters, 2020, 32(18): 1139-1142. doi: 10.1109/LPT.2020.3014695
    [9]
    TIAN J J, LI ZH G, SUN Y X, et al. High-sensitivity fiber-optic strain sensor based on the Vernier effect and separated Fabry–Perot interferometers[J]. Journal of Lightwave Technology, 2019, 37(21): 5609-5618. doi: 10.1109/JLT.2019.2936174
    [10]
    ABBAS L G. Vernier effect-based strain sensor with cascaded Fabry–Pérot interferometers[J]. IEEE Sensors Journal, 2020, 20(16): 9196-9201.
    [11]
    YANG Y, ZHANG X B, YANG L, et al. Ultrahigh-sensitivity displacement sensing enabled by the Vernier effect with inhibited antiresonance[J]. Optics Letters, 2021, 46(5): 1053-1056. doi: 10.1364/OL.419203
    [12]
    ZHOU CH, ZHOU Q, WANG B, et al. High-sensitivity relative humidity fiber-optic sensor based on an internal–external Fabry–Perot cavity Vernier effect[J]. Optics Express, 2021, 29(8): 11854-11868. doi: 10.1364/OE.421060
    [13]
    ZHOU CH, SONG Y J, ZHOU Q, et al. Ultra-high-sensitivity humidity fiber sensor based on harmonic Vernier effect in cascaded FPI[J]. Sensors, 2022, 22(13): 4816. doi: 10.3390/s22134816
    [14]
    QUAN M R, TIAN J J, YAO Y. Ultra-high sensitivity Fabry–Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect[J]. Optics Letters, 2015, 40(21): 4891-4894. doi: 10.1364/OL.40.004891
    [15]
    LI J W, ZHANG M, WAN M G, et al. Ultrasensitive refractive index sensor based on enhanced Vernier effect through cascaded fiber core-offset pairs[J]. Optics Express, 2020, 28(3): 4145-4155. doi: 10.1364/OE.384815
    [16]
    LIU CH Y, CHEN H L, GU M Q, et al. Experimental study on a parallel optical fiber Sagnac loops-based sensor with the advantages of both high sensitivity and ultra-wide measurement range[J]. Infrared Physics & Technology, 2024, 137: 105174.
    [17]
    ZHANG Y F, YU L, HU ZH L, et al. Ultrafast and accurate temperature extraction via kernel extreme learning machine for BOTDA sensors[J]. Journal of Lightwave Technology, 2021, 39(5): 1537-1543. doi: 10.1109/JLT.2020.3035810
    [18]
    ESQUIVEL-HERNÁNDEZ J, MARTÍNEZ-MANUEL R, VALENTÍN-CORONADO L M, et al. Pattern-recognition-based dual-point fiber temperature sensor using a reliable synthetic database[J]. IEEE Sensors Journal, 2024, 24(6): 7850-7857. doi: 10.1109/JSEN.2024.3355394
    [19]
    JIANG H, TANG R, WANG CH Y, et al. Recognition and localization of FBG temperature sensing based on combined CDAE and 1-DCNN[J]. IEEE Sensors Journal, 2024, 24(7): 10125-10137. doi: 10.1109/JSEN.2024.3365995
    [20]
    NAKU W, ALSALMAN O, ZHU CH. High-sensitivity and large-range displacement sensor based on a balloon-shaped optical fiber and machine learning analysis[J]. Journal of Lightwave Technology, 2024, 42(15): 5399-5406. doi: 10.1109/JLT.2024.3388458
    [21]
    PEDRAZA A, DEL RÍO D, BAUTISTA-JUZGADO V, et al. Study of the feasibility of decoupling temperature and strain from a ϕ-PA-OFDR over an SMF using neural networks[J]. Sensors, 2023, 23: 5515. doi: 10.3390/s23125515
    [22]
    CHOI B K, KIM J S, AHN S, et al. Simultaneous temperature and strain measurement in fiber Bragg grating via wavelength-swept laser and machine learning[J]. IEEE Sensors Journal, 2024, 24(17): 27516-27524. doi: 10.1109/JSEN.2024.3429366
    [23]
    CHEN Y R, LI N, YU Y, et al. Dual-parametric simultaneous demodulation of fiber optic seawater temperature and pressure sensors based on machine learning methods[J]. IEEE Sensors Journal, 2023, 23(22): 28294-28303. doi: 10.1109/JSEN.2023.3308079
    [24]
    ZHU CH, ALSALMAN O, NAKU W. Machine learning for a Vernier-effect-based optical fiber sensor[J]. Optics Letters, 2023, 48(9): 2488-2491. doi: 10.1364/OL.489471
    [25]
    ZHU CH, ALSALMAN O. Vernier effect-based optical fiber sensor for dynamic sensing using a coarsely resolved spectrometer[J]. Optics Express, 2023, 31(13): 22250-22259. doi: 10.1364/OE.493302
    [26]
    MEI Y CH, XIA T T, CAI H E, et al. Deep learning improved spectral demodulation of interferometry Vernier effect for pressure sensing[J]. Journal of Lightwave Technology, 2024, 42(1): 430-440. doi: 10.1109/JLT.2023.3307812
    [27]
    ZUO G M, HU H L, LI SH Y, et al. Iterative normalized cross-correlation method for absolute optical path difference demodulation of dual interferometers[J]. Optics Express, 2021, 29(11): 16595-16610. doi: 10.1364/OE.423326
    [28]
    DAI M L, CHEN ZH M, ZHAO Y F, et al. Fiber optic temperature sensor with online controllable sensitivity based on Vernier effect[J]. IEEE Sensors Journal, 2021, 21(19): 21555-21563. doi: 10.1109/JSEN.2021.3101572
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(16) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return