Citation: | LIU Xiao-juan, ZHANG Mei-xia, LIU Tian-run, Lv Wen-hao, LU Cheng. Ultrafast erbium-doped fiber laser modulated by Nb4AlC3 saturable absorber[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0032 |
In this paper, a conventional soliton (CS) mode-locked erbium-doped fiber (EDF) laser was realized using MAX phase material (MAX-PM) Nb4AlC3 as a saturable absorber (SA). First, the liquid phase exfoliation (LPE) method was utilized to prepare Nb4AlC3 nanosheets, and then a piece of tapered fiber was adopted to fabricate Nb4AlC3-SA. It was found that the saturation intensity and modulation depth of the Nb4AlC3-SA are 2.02 MW/cm2 and 1.88 %. Based on the Nb4AlC3-SA, a conventional soliton (CS) mode-locked EDF laser was achieved. The central wavelength, pulse duration, and pulse repetition rate were found to be
[1] |
DEBEUF M P, KNOOPS K, LÓPEZ-IGLESIAS C, et al. Long-term remission of Hailey-Hailey disease by Er: YAG ablative laser therapy[J]. Journal of the European Academy of Dermatology and Venereolog, 2024, 03849989. (查阅网上资料, 未找到卷期页码信息, 请确认补充) .
|
[2] |
CASAMENTI E, POLLONGHINI S, BELLOUARD Y, et al. Few pulses femtosecond laser exposure for high efficiency 3D glass micromachining[J]. Optics Express, 2021, 29(22): 35054-35066. doi: 10.1364/OE.435163
|
[3] |
HUI ZH Q, BU X F, WANG Y H, et al. Bi2O2Te Nanosheets saturable absorber-based passive mode-locked fiber laser: from soliton molecules to harmonic soliton[J]. Advanced Optical Materials, 2022, 10(24): 2201812. doi: 10.1002/adom.202201812
|
[4] |
XING X W, LIU Y X, HAN J F, et al. Preparation of high damage threshold device based on Bi2Se3 film and its application in fiber lasers[J]. ACS Photonics, 2023, 10(7): 2264-2271. doi: 10.1021/acsphotonics.2c01375
|
[5] |
NISHIZAWA N, KITAJIMA S, SAKAKIBARA Y. Spectral peaking in an ultrashort-pulse fiber laser oscillator with a molecular gas cell[J]. Optics Letters, 2022, 47(10): 2422-2425. doi: 10.1364/OL.458643
|
[6] |
KELLER U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838. doi: 10.1038/nature01938
|
[7] |
HAN Y, GUO Y B, GAO B, et al. Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers[J]. Progress in Quantum Electronics, 2020, 71: 100264. doi: 10.1016/j.pquantelec.2020.100264
|
[8] |
RENNINGER W H, CHONG A, WISE F W. Giant-chirp oscillators for short-pulse fiber amplifiers[J]. Optics Letters, 2008, 33(24): 3025-3027. doi: 10.1364/OL.33.003025
|
[9] |
YUN L, LIU X M. Generation and propagation of bound-state pulses in a passively mode-locked figure-eight laser[J]. IEEE Photonics Journal, 2012, 4(2): 512-519. doi: 10.1109/JPHOT.2012.2191948
|
[10] |
CUI Y D, LIU X M. Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons[J]. Optics Express, 2013, 21(16): 18969-18974. doi: 10.1364/OE.21.018969
|
[11] |
YANG Y, WANG CH R, HAN M M, et al. Wavelength convertible flat/tilt-top dissipative- soliton-resonance pulses in an anomalous dispersion fiber laser[J]. Journal of Lightwave Technology, 2024, 42(19): 6925-6931. doi: 10.1109/JLT.2024.3413894
|
[12] |
HAN D D, MEI L ZH, HUI ZH Q, et al. Flexible wavelength-, pulse-controlled mode-locked all-fiber laser based on a fiber Lyot filter[J]. Optics Express, 2022, 30(23): 41271-41278.
|
[13] |
LIU X, CHU H W, XU M J, et al. Reverse saturable absorption in Ti3C2 MXene nanosheets for dissipative soliton resonance mode-locking operation in Er-doped fiber laser[J]. Optical Materials, 2023, 136: 113463. doi: 10.1016/j.optmat.2023.113463
|
[14] |
SHANG X X, ZHANG Y L, LI T, et al. Nonlinear optical response of niobium telluride and its application for demonstrating pulsed fiber lasers[J]. Journal of Materiomics, 2024, 10(2): 355-365. doi: 10.1016/j.jmat.2023.05.015
|
[15] |
LI L, XUE Z, PANG L H, et al. Saturable absorption properties and ultrafast photonics applications of HfS3[J]. Optics Letters, 2024, 49(5): 1293-1296. doi: 10.1364/OL.513573
|
[16] |
ZHANG H, BAO Q L, TANG D Y, et al. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker[J]. Applied Physics Letters, 2009, 95(14): 141103. doi: 10.1063/1.3244206
|
[17] |
WANG L R, LIU X M, GONG Y K. Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers[J]. Laser Physics Letters, 2010, 7(1): 63-67. doi: 10.1002/lapl.200910109
|
[18] |
CHENG C H, LIN G R. Carbon nanomaterials based saturable absorbers for ultrafast passive mode-locking of fiber lasers[J]. Current Nanoscience, 2020, 16(3): 441-457. doi: 10.2174/1573413715666191114150100
|
[19] |
ZHANG X, XING X W, LI J, et al. Controllable epitaxy of quasi-one-dimensional topological insulator α-Bi4Br4 for the application of saturable absorber[J]. Applied Physics Letters, 2022, 120(9): 093103. doi: 10.1063/5.0083807
|
[20] |
LIU W J, LIU M L, LIU X M, et al. Recent advances of 2D materials in nonlinear photonics and fiber lasers[J]. Advanced Optical Materials, 2020, 8(8): 1901631. doi: 10.1002/adom.201901631
|
[21] |
QI Y Y, YANG S, WANG J J, et al. Recent advance of emerging low-dimensional materials for vector soliton generation in fiber lasers[J]. Materials Today Physics, 2022, 23: 100622. doi: 10.1016/j.mtphys.2022.100622
|
[22] |
LIU Y ZH, SUN L, ZHENG B CH, et al. Anisotropic elastic, thermal properties and electronic structures of M2AlB2(M=Fe, Cr, and Mn) layer structure ceramics[J]. Ceramics International, 2021, 47(1): 1421-1428. doi: 10.1016/j.ceramint.2020.08.266
|
[23] |
BADIE S, SEBOLD D, VAßEN R, et al. Mechanism for breakaway oxidation of the Ti2AlC MAX phase[J]. Acta Materialia, 2021, 215: 117025. doi: 10.1016/j.actamat.2021.117025
|
[24] |
LEI X, LIN N M. Structure and synthesis of MAX phase materials: a brief review[J]. Critical Reviews in Solid State and Materials Sciences, 2022, 47(5): 736-771. doi: 10.1080/10408436.2021.1966384
|
[25] |
LIU G T, LI Z F, GAO W H, et al. Oxidation mechanism and mechanical properties of substitutional transition metal modified Nb4AlC3: a first-principles density functional theory study[J]. Ceramics International, 2023, 49(17): 29141-29154. doi: 10.1016/j.ceramint.2023.06.194
|
[26] |
TALLMAN D J, ANASORI B, BARSOUM M W. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air[J]. Materials Research Letters, 2013, 1(3): 115-125. doi: 10.1080/21663831.2013.806364
|
[27] |
BARSOUM M W. The Mn+1AXn phases: a new class of solids[J]. Progress in Solid State Chemistry, 2000, 28(1-4): 201-281. doi: 10.1016/S0079-6786(00)00006-6
|
[28] |
LOW I M. Advances in Science and Technology of Mn+1AXn Phases[M]. Amsterdam: Elsevier, 2012.
|
[29] |
EKLUND P, BECKERS M, JANSSON U, et al. The M n+1AX n phases: materials science and thin-film processing[J]. Thin Solid Films, 2010, 518(8): 1851-1878. doi: 10.1016/j.tsf.2009.07.184
|
[30] |
JHANG W L, LI C J, WANG A SH, et al. Tunable optical property of plasmonic-polymer nanocomposites composed of multilayer nanocrystal arrays stacked in a homogeneous polymer matrix[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 51873-51884.
|
[31] |
CHING W Y, MO Y X, ARYAL S, et al. Intrinsic mechanical properties of 20 MAX‐phase compounds[J]. Journal of the American Ceramic Society, 2013, 96(7): 2292-2297. doi: 10.1111/jace.12376
|
[32] |
ZHAO ZH Y, DU B J, REN Z H, et al. Two-dimensional Nb4AlC3(MAX) and Nb4C3(MXene): excellent optical limiting materials with oppositely applicated waveband[J]. ACS Applied Nano Materials, 2024, 7(3): 2775-2785. doi: 10.1021/acsanm.3c04990
|
[33] |
KUMAR P, DEY A, ROQUES J, et al. Photoexfoliation synthesis of 2D materials[J]. ACS Materials Letters, 2022, 4(2): 263-270. doi: 10.1021/acsmaterialslett.1c00651
|
[34] |
SHI Y M, LI H N, LI L J, et al. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques[J]. Chemical Society Reviews, 2015, 44(9): 2744-2756. doi: 10.1039/C4CS00256C
|
[35] |
JAWAID A, NEPAL D, PARK K, et al. Mechanism for liquid phase exfoliation of MoS2[J]. Chemistry of Materials, 2016, 28(1): 337-348. doi: 10.1021/acs.chemmater.5b04224
|
[36] |
LI L CH, ZHOU M, JIN L, et al. Green preparation of aqueous graphene dispersion and study on its dispersion stability[J]. Materials, 2020, 13(18): 4069. doi: 10.3390/ma13184069
|
[37] |
HARUN S W, LIM K S, AHMAD H. Investigation of dispersion characteristic in tapered fiber[J]. Laser Physics, 2011, 21(5): 945-947. doi: 10.1134/S1054660X11090118
|
[38] |
JIANG X W, LV W H, XU Y, et al. Kerr lens mode locked operation in an erbium-doped fiber laser modulated by silica tapered fiber[J]. Optical Fiber Technology, 2024, 84: 103725. doi: 10.1016/j.yofte.2024.103725
|
[39] |
HONG ZH F, ZHANG M X, JIANG X W, et al. Generation of soliton molecules in mode-locked erbium-doped fiber laser by InSb saturable absorber[J]. Infrared Physics & Technology, 2023, 129: 104540.
|
[40] |
HU CH F, LI F ZH, ZHANG J, et al. Nb4AlC3: a new compound belonging to the MAX phases[J]. Scripta Materialia, 2007, 57(10): 893-896. doi: 10.1016/j.scriptamat.2007.07.038
|
[41] |
GUO B, XIAO Q L, WANG SH H, et al. 2D layered materials: synthesis, nonlinear optical properties, and device applications[J]. Laser & Photonics Reviews, 2019, 13(12): 1800327.
|
[42] |
SHANG J CH, ZHAO SH ZH, LIU Y ZH, et al. . Separation and amplification of Kelly sidebands and main soliton pulse in a 2-μm ultrafast fiber chirped pulse amplifier[J]. Infrared Physics & Technology, 2022, 127: 104455.
|
[43] |
YI J, DU L, LI J, et al. Unleashing the potential of Ti2CT x MXene as a pulse modulator for mid-infrared fiber lasers[J]. 2D Materials, 2019, 6(4): 045038. doi: 10.1088/2053-1583/ab39bc
|
[44] |
FENG J J, LI X H, FENG T C, et al. Harmonic mode‐locked Er‐doped fiber laser by evanescent field‐based MXene Ti3C2T x (T= F, O, or OH) saturable absorber[J]. Annalen der Physik, 2020, 532(1): 1900437. doi: 10.1002/andp.201900437
|
[45] |
HUANG W CH, MA CH Y, LI CH, et al. Highly stable MXene (V2CTx)-based harmonic pulse generation[J]. Nanophotonics, 2020, 9(8): 2577-2585. doi: 10.1515/nanoph-2020-0134
|
[46] |
AHMAD H, KAMELY A A, YUSOFF N, et al. Generation of Q-switched pulses in thulium-doped and thulium/holmium-co-doped fiber lasers using MAX phase (Ti3AlC2)[J]. Scientific Reports, 2020, 10(1): 9233. doi: 10.1038/s41598-020-66141-3
|
[47] |
SUN G Q, FENG M, ZHANG K, et al. Q-switched and mode-locked Er-doped fiber laser based on MAX phase Ti2AlC saturable absorber[J]. Results in Physics, 2021, 26: 104451. doi: 10.1016/j.rinp.2021.104451
|
[48] |
LEE J, KWON S Y, LEE J H. Harmonically mode-locked Er-doped fiber laser at 1.3 GHz using a V2AlC MAX phase nanoparticle-based saturable absorber[J]. Optics & Laser Technology, 2022, 145: 107525.
|
[49] |
ZHANG K, FENG M, SUN G Q, et al. Q-switched and noise-like mode-locked fiber laser based on ternary transition-metal carbide Nb2AlC saturable absorber[J]. Optics & Laser Technology, 2023, 162: 109237.
|