Volume 17 Issue 3
May  2024
Turn off MathJax
Article Contents
HE Xiao-ying, ZHANG Chuan, ZHANG Yin-dong, RAO Lan. Influence of SA recovery time on orthogonally polarized dissipative solitons[J]. Chinese Optics, 2024, 17(3): 714-723. doi: 10.37188/CO.EN-2023-0032
Citation: HE Xiao-ying, ZHANG Chuan, ZHANG Yin-dong, RAO Lan. Influence of SA recovery time on orthogonally polarized dissipative solitons[J]. Chinese Optics, 2024, 17(3): 714-723. doi: 10.37188/CO.EN-2023-0032

Influence of SA recovery time on orthogonally polarized dissipative solitons

doi: 10.37188/CO.EN-2023-0032
Funds:  Supported by National Natural Science Foundation of China (No. 61675046, No. 61935005)
More Information
  • Author Bio:

    He Xiao-ying (1981—), female, born in Jingzhou, Hubei. She received her Ph.D. degree from the Huazhong University of Science and Technology in 2009. She now works as an associated investigator at the Beijing University of Posts and Telecommunications. Her main research interests include semiconductor optoelectronic devices, neural synaptic devices, fiber mode-locking lasers, and beam shaping. E-mail: xiaoyinghe@bupt.edu.cn

  • Corresponding author: xiaoyinghe@bupt.edu.cn
  • Received Date: 15 Dec 2023
  • Rev Recd Date: 04 Jan 2024
  • Available Online: 17 Apr 2024
  • Polarization is a crucial factor in shaping and stabilizing mode-locking pulses. We develop an orthogonally polarized numerical modeling of passive mode-locked graphene fiber lasers for generating orthogonally polarized dissipative solitons (DSs). The focus is on analyzing the influence of orthogonal polarization in this net-normal dispersion birefringent cavity caused by the polarization-dependent graphene microfiber saturable absorber. The research results demonstrate that the recovery time of such saturable absorbers significantly affects the characteristics of the orthogonally polarized DSs’ output pulses, including energy, pulse width, time-bandwidth product, and chirps. Results show that its recovery time of 120 fs is optimal, producing two orthogonally polarized narrow dissipative soliton pulses with large chirps of about 7.47 ps and 8.06 ps. This has significant implications for the development of compact, high-power, polarized dissipative soliton fiber laser systems.


  • loading
  • [1]
    CHANG G Q, WEI ZH Y. Ultrafast fiber lasers: an expanding versatile toolbox[J]. iScience, 2020, 23(5): 101101. doi: 10.1016/j.isci.2020.101101
    KIM J, SONG Y J. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 2016, 8(3): 465-540. doi: 10.1364/AOP.8.000465
    LI G M, YAN X H, KONG J, et al. Passive mode locking in fiber lasers due to the polarization-dependent losses[J]. Applied Optics, 2020, 59(33): 10201-10206. doi: 10.1364/AO.411932
    MA CH Y, GAO B, WU G, et al. Observation of dissipative bright soliton and dark soliton in an all-normal dispersion fiber laser[J]. International Journal of Optics, 2016, 2016: 3946525.
    LI X, WANG D N, HUA K, et al. Saturable absorber based on graphene for a hybrid passive mode-locked erbium-doped fiber laser[J]. Optical Fiber Technology, 2022, 70: 102867. doi: 10.1016/j.yofte.2022.102867
    TANG P H, LUO M L, ZHAO T, et al. Generation of noise-like pulses and soliton rains in a graphene mode-locked erbium-doped fiber ring laser[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(3): 303-311.
    SALAM S, AL-MASOODI A H H, YASIN M, et al. Soliton mode-locked Er-doped fiber laser by using AlQ3 saturable absorber[J]. Optics & Laser Technology, 2020, 123: 105893.
    HUI ZH Q, BU X F, WANG Y H, et al. Bi2O2Te nanosheets saturable absorber-based passive mode-locked fiber laser: from soliton molecules to harmonic soliton[J]. Advanced Optical Materials, 2022, 10(24): 2201812. doi: 10.1002/adom.202201812
    HUANG W CH, HU L P, TANG Y F, et al. Recent advances in functional 2D MXene-based nanostructures for next-generation devices[J]. Advanced Functional Materials, 2020, 30(49): 2005223. doi: 10.1002/adfm.202005223
    WANG M K, ZI Y, ZHU J, et al. Construction of super-hydrophobic PDMS@MOF@Cu mesh for reduced drag, anti-fouling and self-cleaning towards marine vehicle applications[J]. Chemical Engineering Journal, 2021, 417: 129265. doi: 10.1016/j.cej.2021.129265
    HUANG W CH, ZHU J, WANG M K, et al. Emerging mono-elemental bismuth nanostructures: controlled synthesis and their versatile applications[J]. Advanced Functional Materials, 2021, 31(10): 2007584. doi: 10.1002/adfm.202007584
    WANG M K, ZHU J, ZI Y, et al. 3D MXene sponge: facile synthesis, excellent hydrophobicity, and high photothermal efficiency for waste oil collection and purification[J]. ACS Applied Materials & Interfaces, 2021, 13(39): 47302-47312.
    HUANG W CH, WANG M M, HU L P, et al. Recent advances in semiconducting monoelemental selenium nanostructures for device applications[J]. Advanced Functional Materials, 2020, 30(42): 2003301. doi: 10.1002/adfm.202003301
    HUANG W CH, ZHANG Y, YOU Q, et al. Enhanced photodetection properties of tellurium@selenium roll-to-roll nanotube heterojunctions[J]. Small, 2019, 15(23): 1900902. doi: 10.1002/smll.201900902
    KIM D, PARK N H, LEE H, et al. Graphene-based saturable absorber and mode-locked laser behaviors under gamma-ray radiation[J]. Photonics Research, 2019, 7(7): 742-747. doi: 10.1364/PRJ.7.000742
    SUN ZH P, HASAN T, TORRISI F, et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803-810. doi: 10.1021/nn901703e
    CAO T, LIU SH ZH, GUO Z Y, et al. Quantification of dissipative effects in a complex Ginzburg-Landau equation governed laser system by tracing soliton dynamics[J]. Opt Express, 2023, 31(3): 4055-4066. doi: 10.1364/OE.476083
    CABASSE A, ORTAÇ B, MARTEL G, et al. Dissipative solitons in a passively mode-lock Er-doped fiber with strong normal dispersion[J]. Optics Express, 2008, 16(23): 19322-19329.
    SONG Y F, SHI X J, WU CH F, et al. Recent progress of study on optical solitons in fiber lasers[J]. Applied Physics Reviews, 2019, 6(2): 021313. doi: 10.1063/1.5091811
    LIU X J, HU P, LIU Y, et al. Conventional solitons and bound-state solitons in an erbium-doped fiber laser mode-locked by TiSe2-based saturable absorber[J]. Nanotechnology, 2020, 31(36): 365202. doi: 10.1088/1361-6528/ab8fe6
    ZHANG H, TANG D Y, ZHAO L M, et al. Vector dissipative solitons in graphene mode locked fiber lasers[J]. Optics Communications, 2010, 283(17): 3334-3338. doi: 10.1016/j.optcom.2010.04.064
    DUDLEY J M, DIAS F, ERKINTALO M, et al. Instabilities, breathers and rogue waves in optics[J]. Nature Photonics, 2014, 8(10): 755-764. doi: 10.1038/nphoton.2014.220
    LECAPLAIN C, GRELU P, SOTO-CRESPO J M, et al. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser[J]. Physical Review Letters, 2012, 108(23): 233901. doi: 10.1103/PhysRevLett.108.233901
    RENNINGER W H, CHONG A, WISE F W. Dissipative solitons in normal-dispersion fiber lasers[J]. Physical Review A, 2008, 77(2): 023814. doi: 10.1103/PhysRevA.77.023814
    LAN H W, CHEN F L, WANG Y T, et al. Polarization dynamics of vector solitons in a fiber laser[J]. Optics Express, 2023, 31(13): 21452-21463. doi: 10.1364/OE.488504
    LEE J, KWON S, ZHAO L M, et al. Investigation into the impact of the recovery time of a saturable absorber for stable dissipative soliton generation in Yb-doped fiber lasers[J]. Optics Express, 2021, 29(14): 21978-21991. doi: 10.1364/OE.428462
    XU SH T, TURNALI A, SANDER M Y. Group-velocity-locked vector solitons and dissipative solitons in a single fiber laser with net-anomalous dispersion[J]. Scientific Reports, 2022, 12(1): 6841. doi: 10.1038/s41598-022-10818-4
    ZHAO L M. Vector Dissipative Solitons[M]//FERREIRA M F S. Dissipative Optical Solitons. Cham: Springer, 2022: 105-130.
    YAN R B, HE X Y, ZHANG CH, et al. SSFM-global-error-local-energy method for improving computational efficiency of passively mode-locked fiber laser[J]. Chinese Optics, 2023, 16(3): 733-742. (in Chinese). doi: 10.37188/CO.EN.2022-0016
    HE X Y, WANG D N, LIU ZH B. Pulse-width tuning in a passively mode-locked fiber laser with graphene saturable absorber[J] IEEE Photonics Technology Letters, 2014, 26(4): 360-363.
    LIU X M. Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system[J]. Physical Review A, 2010, 81(5): 053819. doi: 10.1103/PhysRevA.81.053819
    LEE J, KWON S, LEE J H. Numerical investigation of the impact of the saturable absorber recovery time on the mode-locking performance of fiber lasers[J]. Journal of Lightwave Technology, 2020, 38(15): 4124-4132. doi: 10.1109/JLT.2020.2985718
    LI D J, TANG D Y, ZHAO L M, et al. Mechanism of dissipative-soliton-resonance generation in passively mode-locked all-normal-dispersion fiber lasers[J]. Journal of Lightwave Technology, 2015, 33(18): 3781-3787. doi: 10.1109/JLT.2015.2449874
    QIN T. The development of the electric PZT extrude fiber polarization controller[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese).
    HAN D D, ZHANG J Y, REN K L, et al. Real-time measurement of fission dynamics of dissipative soliton[J]. Acta Optica Sinica, 2022, 42(7): 0706001. (in Chinese). doi: 10.3788/AOS202242.0706001
    DAWLATY J M, SHIVARAMAN S, CHANDRASHEKHAR M, et al. Measurement of ultrafast carrier dynamics in epitaxial graphene[J]. Applied Physics Letters, 2008, 92(4): 042116. doi: 10.1063/1.2837539
    BREUSING M, ROPERS C, ELSAESSER T. Ultrafast carrier dynamics in graphite[J]. Physical Review Letters, 2009, 102(8): 086809. doi: 10.1103/PhysRevLett.102.086809
    SUN Z, HASAN T, FERRARI A C. Ultrafast lasers mode-locked by nanotubes and graphene[J]. Physica E:Low-dimensional Systems and Nanostructures, 2012, 44(6): 1082-1091. doi: 10.1016/j.physe.2012.01.012
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views(81) PDF downloads(26) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint