Volume 17 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
WU Rong, YANG Jian-ye, ZHANG Hao-chen. All-optical logic gate based on nonlinear effects of two-dimensional photonic crystals[J]. Chinese Optics, 2024, 17(2): 456-467. doi: 10.37188/CO.EN-2023-0021
Citation: WU Rong, YANG Jian-ye, ZHANG Hao-chen. All-optical logic gate based on nonlinear effects of two-dimensional photonic crystals[J]. Chinese Optics, 2024, 17(2): 456-467. doi: 10.37188/CO.EN-2023-0021

All-optical logic gate based on nonlinear effects of two-dimensional photonic crystals

doi: 10.37188/CO.EN-2023-0021
Funds:  Supported by Natural Science Foundation of Gansu Province (No. 21JR7RA289)
More Information
  • Author Bio:

    WU Rong (1968—), female, born in Wu-wei, Gansu Province, Professor, School of Electronic and Information Engineering, Lanzhou Jiaotong University. Her research interest is on semiconductor integrated circuit. E-mail: 759165367@qq.com

    YANG Jian-ye (1999—), male, born in Zhouqu Country, Gansu Province, Postgraduate, His research interests are on mode division multiplexing integrated devices and all-optical logic devices. E-mail: 1114332211@qq.com

  • Corresponding author: 1114332211@qq.com
  • Received Date: 30 Aug 2023
  • Rev Recd Date: 07 Oct 2023
  • Accepted Date: 18 Oct 2023
  • Available Online: 29 Nov 2023
  • All-optical XOR, NOT and two-input AND logic gates are designed based on the nonlinear effect and linear interference effect of photonic crystals. The complex logic expressions are divided by inversion theorem, and all-optical NOR gate and four-input AND gate logic devices are designed by cascade combination. In this paper, the Finite-Difference Time-Domain (FDTD) method is used for simulation, and the coupling characteristics of nonlinear annular cavities are analyzed. Then, the above logic devices are designed under the condition that the signal wavelength is 1.47 μm, and more input devices can be designed by expanding the input. The influence of signal power on the logic function of the four-input AND logic devices is analyzed. The results show that when the power of the signal light source is between 1.1 W/μm2 and 3.4 W/μm2, the logical contrast ratio of the output is greater than 10 dB. The response time of the designed device is only 1.6 ps, the occupied area is small, and the device is easy to expand and integrate. It has great application prospect in optical processing systems and integrated optical paths.


  • loading
  • [1]
    MEKIS A, MEIER M, DODABALAPUR A, et al. Lasing mechanism in two-dimensional photonic crystal lasers[J]. Applied Physics A, 1999, 99(1): 111-114.
    YOSHIKUNI Y. Semiconductor optical devices[J]. IEEJ Transactions on Electronics Information and Systems, 2008, 113(4): 231-237.
    CHANDERKANTA, CHEN N K, KAUSHIK B K, et al. Implementation of reversible Peres gate using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers[J]. Optics & Laser Technology, 2019, 117: 28-37.
    LIU Q, LI N, TAN CH H. All-optical logic gate based on manipulation of surface polaritons solitons via external gradient magnetic fields[J]. Physical Review A, 2020, 101(2): 023818. doi: 10.1103/PhysRevA.101.023818
    HUANG Y J, XIAO T X, CHEN SH, et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet[J]. Opto-Electronic Advances, 2023, 6(7): 220073. doi: 10.29026/oea.2023.220073
    ICHIOKA Y, TANIDA J. Optical parallel logic gates using a shadow-casting system for optical digital computing[J]. Proceedings of the IEEE, 1984, 72(7): 787-801. doi: 10.1109/PROC.1984.12939
    YATAGAI T. Optical space-variant logic-gate array based on spatial encoding technique[J]. Optics Letters, 1986, 11(4): 260-262. doi: 10.1364/OL.11.000260
    KOTB A, GUO CH L. 120 Gb/s all-optical NAND logic gate using reflective semiconductor optical amplifiers[J]. Journal of Modern Optics, 2020, 67(12): 1138-1144. doi: 10.1080/09500340.2020.1813342
    KOTB A. Simulation of high quality factor all-optical logic gates based on quantum-dot semiconductor optical amplifier at 1 Tb/s[J]. Optik, 2016, 127(1): 320-325. doi: 10.1016/j.ijleo.2015.10.093
    WANG J, SUN Q ZH, SUN J Q. All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing[J]. Optics Express, 2009, 17(15): 12555-12563. doi: 10.1364/OE.17.012555
    LIU H Q, QUAN ZH Q, CHENG Y, et al. Ultra-compact universal linear-optical logic gate based on single rectangle plasmonic slot nanoantenna[J]. Plasmonics, 2021, 16(3): 973-980. doi: 10.1007/s11468-020-01363-9
    SUI J Y, ZHANG D, ZHANG H F. Logical OR operation and magnetic field sensing based on layered topology[J]. Journal of Physics D:Applied Physics, 2022, 55(41): 415001. doi: 10.1088/1361-6463/ac84e9
    SUI J Y, DONG R Y, LIAO S Y, et al. Janus metastructure based on magnetized plasma material with and logic gate and multiple physical quantity detection[J]. Annalen der Physik, 2023, 535(3): 2200509. doi: 10.1002/andp.202200509
    TANNAZ S, MORADKHANI M, TAHERZADE M, et al. Ultracompact, high-extinction ratio XOR, OR, and Feynman logic gates based on plasmonic metal–insulator–metal directional couplers[J]. Applied Optics, 2023, 62(3): 644-653. doi: 10.1364/AO.478011
    HUANG Y H, SHI M H, YU A D, et al. Design of multifunctional all-optical logic gates based on photonic crystal waveguides[J]. Applied Optics, 2023, 62(3): 774-781. doi: 10.1364/AO.473410
    JIAO SH M, LIU J W, LIWEN ZHANG L W, et al. All-optical logic gate computing for high-speed parallel information processing[J]. Opto-Electronic Science, 2022, 1(9): 220010. doi: 10.29026/oes.2022.220010
    HOU H Q, YANG Y B, WU M, et al. Solar-blind ultraviolet band-pass filter based on coupling of photonic crystal defects[J]. Acta Optica Sinica, 2023, 43(9): 0923003. (in Chinese). doi: 10.3788/AOS221815
    HU Y C, CHEN H M. Optical add-drop multiplexer for dense wavelength division multiplexing system based on photonic crystals[J]. Acta Optica Sinica, 2023, 43(2): 0223002. (in Chinese). doi: 10.3788/AOS220857
    WU R, LIU Z, YAN Q B, et al. Eight-channel photonic-crystal wavelength-division multiplexer[J]. Laser & Optoelectronics Progress, 2019, 56(9): 091302. (in Chinese).
    YANG Y H, YANG F L, LU L, et al. Research on interferometer photonic crystal fiber optic gyroscope technology[J]. Acta Optica Sinica, 2018, 38(3): 0328004. (in Chinese). doi: 10.3788/AOS201838.0328004
    WANG J L, LIU Y, CHEN H M. Design on terahertz polarization beam splitter based on self-collimating effect of photonic crystal[J]. Acta Optica Sinica, 2018, 38(4): 0423001. (in Chinese). doi: 10.3788/AOS201838.0423001
    CHHIPA M K, MADHAV B T P, SUTHAR B, et al. Ultra-compact with improved data rate optical encoder based on 2D linear photonic crystal ring resonator[J]. Photonic Network Communications, 2022, 44(1): 30-40. doi: 10.1007/s11107-022-00975-x
    CHHIPA M K, MADHAV B T P, ROBINSON S, et al. Realization of all-optical logic gates using a single design of 2D photonic band gap structure by square ring resonator[J]. Optical Engineering, 2021, 60(7): 075104.
    PARANDIN F, HEIDARI F, RAHIMI Z, et al. Two-dimensional photonic crystal biosensors: a review[J]. Optics & Laser Technology, 2021, 144: 107397.
    GHARSALLAH Z, NAJJAR M, SUTHAR B, et al. High sensitivity and ultra-compact optical biosensor for detection of UREA concentration[J]. Optical and Quantum Electronics, 2018, 50(6): 249. doi: 10.1007/s11082-018-1520-2
    ALAEI S, SEIFOURI M, BABAABBASI G, et al. Numerical investigation on self-heating effect in 1.3 µm quantum dot photonic crystal microstructure VCSELs[J]. The European Physical Journal Plus, 2022, 137(4): 515. doi: 10.1140/epjp/s13360-022-02731-6
    JIANG Y CH, LIU SH B, ZHANG H F, et al. Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals[J]. Optics Communications, 2015, 348: 90-94. doi: 10.1016/j.optcom.2015.03.011
    ZHOU X P, SHU J. Novel 1×3 splitter based on photonic crystal self-collimation effect[J]. Acta Optica Sinica, 2013, 33(4): 0423002. (in Chinese). doi: 10.3788/AOS201333.0423002
    BOUAOUINA M S, LEBBAL M R, BOUCHEMAT T, et al. High contrast ratio for full-designs optical logic gates based on photonic crystal ring resonator[J]. Frequenz, 2020, 74(9-10): 277-285. doi: 10.1515/freq-2020-0011
    CABALLERO L P, POVINELLI M L, RAMIREZ J C, et al. Photonic crystal integrated logic gates and circuits[J]. Optics Express, 2022, 30(2): 1976-1993. doi: 10.1364/OE.444714
    VADIVU N S, TRABELSI Y, JAYASINGH J R, et al. A novel design of all logic gates in honeycomb photonic crystal and independent of polarization modes (TE/TM) for optical integrated circuit applications[J]. Optics and Lasers in Engineering, 2023, 161: 107345. doi: 10.1016/j.optlaseng.2022.107345
    SALIMZADEH S, ALIPOUR-BANAEI H. A novel proposal for all optical 3 to 8 decoder based on nonlinear ring resonators[J]. Journal of Modern Optics, 2018, 65(17): 2017-2024. doi: 10.1080/09500340.2018.1489077
    DAGHOOGHI T, SOROOSH M, ANSARI-ASL K. A low-power all optical decoder based on photonic crystal nonlinear ring resonators[J]. Optik, 2018, 174: 400-408. doi: 10.1016/j.ijleo.2018.08.090
    GANESHA K V S, PATIL P S, MAIDUR S R, et al. Sprayed nanocrystalline ZMS thin films for nonlinear optical device applications[J]. Optical Materials, 2019, 96: 109304. doi: 10.1016/j.optmat.2019.109304
    MORADI R. All optical half subtractor using photonic crystal based nonlinear ring resonators[J]. Optical and Quantum Electronics, 2019, 51(4): 119. doi: 10.1007/s11082-019-1831-y
    PASHAMEHR A, ZAVVARI M, ALIPOUR-BANAEI H. All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators[J]. Frontiers of Optoelectronics, 2016, 9(4): 578-584. doi: 10.1007/s12200-016-0513-7
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views(185) PDF downloads(77) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint