Citation: | ZHONG Guo-shun, LIU Qiu-zuo, LI Meng, PENG Tao, SUN Jian-feng, LIU Jian-wei. Research on high-precision registration methods for GM-APD LiDAR point clouds in dynamic scanning scenarios[J]. Chinese Optics. doi: 10.37188/CO.2025-0073 |
This paper addresses the challenges of low overlap and mismatched point pairs in Geiger-mode avalanche photodiode (GM-APD) LiDAR point clouds under dynamic scanning conditions. To improve registration accuracy and robustness, an enhanced Iterative Closest Point (ICP) algorithm is proposed, integrating a bidirectional matching scheme and multi-resolution neighborhood expansion. First, a K-D tree-based bidirectional search identifies overlapping regions between consecutive frames, enabling accurate initial alignment. Then, a high-resolution neighborhood expansion approach, weighted by local curvature similarity, is applied to refine the transformation matrix and suppress mismatched correspondences. Finally, a cascaded compensation mechanism ensures global consistency across frames. Experiments demonstrate that our method achieves average distance errors of 0.21 m (2 km scene) and 0.10 m (400 m scene), effectively improving registration precision in dynamic scenarios and offering valuable support for 3D reconstruction.
[1] |
LESLIE M. On-chip LiDAR technology advances for cars, cell phones[J]. Engineering, 2022, 18: 3-5. doi: 10.1016/j.eng.2022.09.003
|
[2] |
GUO M, SUN M X, ZHOU T F, et al. Novel trajectory optimization algorithm of vehicle-borne LiDAR mobile measurement system[J]. Sensors and Materials, 2020, 32(11): 3935-3953. doi: 10.18494/SAM.2020.3052
|
[3] |
桑洋, 纪新春, 魏东岩, 等. 基于测速测距激光雷达的飞行器地形匹配导航方法[J]. 中国惯性技术学报,2024,32(1):8-15.
SANG Y, JI X CH, WEI D Y, et al. Terrain matching navigation method for air vehicle based on FMCW LiDAR[J]. Journal of Chinese Inertial Technology, 2024, 32(1): 8-15.
|
[4] |
孙国祥, 黄银锋, 汪小旵, 等. 基于LIO-SAM建图和激光视觉融合定位的温室自主行走系统[J]. 农业工程学报,2024,40(3):227-239. doi: 10.11975/j.issn.1002-6819.202311146
SUN G X, HUANG Y F, WANG X CH, et al. Autonomous navigation system in a greenhouse using LIO-SAM mapping and laser vision fusion localization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(3): 227-239. doi: 10.11975/j.issn.1002-6819.202311146
|
[5] |
郭明, 齐慧慧, 郭可才, 等. 融合北斗/GNSS定位和5G通讯的地基激光雷达测量系统[J]. 光学精密工程,2023,31(4):450-458. doi: 10.37188/OPE.20233104.0450
GUO M, QI H H, GUO K C, et al. Ground-based LiDAR measurement system integrating BeiDou/GNSS positioning and 5G communication[J]. Optics and Precision Engineering, 2023, 31(4): 450-458. doi: 10.37188/OPE.20233104.0450
|
[6] |
GUO M, ZHOU Y Q, ZHAO J H, et al. Urban Geospatial Information Acquisition Mobile Mapping System based on close-range photogrammetry and IGS site calibration[J]. Geo-spatial Information Science, 2021, 24(4): 558-579. doi: 10.1080/10095020.2021.1924084
|
[7] |
王召泽, 韩若愚, 赵智伟, 等. 手持三维激光扫描仪在城市更新立面测量中的应用[J]. 测绘通报,2025(1):133-137.
WANG ZH Z, HAN R Y, ZHAO ZH W, et al. The application of handheld 3D laser scanner in urban renewal facade measurement[J]. Bulletin of Surveying and Mapping, 2025(1): 133-137.
|
[8] |
潘斌, 蔡志刚, 刘微微, 等. 机载激光雷达点云的城市建筑物直线特征提取方法[J]. 测绘工程,2022,31(5):16-23.
PAN B, CAI ZH G, LIU W W, et al. Straight line feature extraction method of city airborne LiDAR point clouds[J]. Engineering of Surveying and Mapping, 2022, 31(5): 16-23.
|
[9] |
MARINO R M, DAVIS W R. Jigsaw: a foliage-penetrating 3D imaging laser radar system[J]. Lincoln Laboratory Journal, 2005, 15(1): 23-36.
|
[10] |
MARINO R M, STEPHENS T, HATCH R E, et al. A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements[J]. Proceedings of SPIE, 2003, 5086: 1-15. doi: 10.1117/12.501581
|
[11] |
MARINO R M, DAVIS W R, RICH G C, et al. High-resolution 3D imaging laser radar flight test experiments[J]. Proceedings of SPIE, 2005, 9591: 138-151.
|
[12] |
ALBOTA M A, AULL B F, FOUCHE D G, et al. Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays[J]. Lincoln Laboratory Journal, 2002, 13(2): 351-370.
|
[13] |
ALBOTA M, GURJAR R, MANGOGNIA A, et al. The airborne optical systems testbed (AOSTB)[R]. Lexington: MIT Lincoln Laboratory Lexington United States, 2017. (查阅网上资料, 未找到本条文献信息, 请确认).
|
[14] |
KNOWLTON R. Airborne ladar imaging research testbed[R]. Lexington: MIT Lincoln Laboratory, 2011: 1.
|
[15] |
PAWLIKOWSKA A M, HALIMI A, LAMB R A, et al. Single-photon three-dimensional imaging at up to 10 kilometers range[J]. Optics Express, 2017, 25(10): 11919-11931. doi: 10.1364/OE.25.011919
|
[16] |
ZHANG Y F, HE Y, YANG F, et al. Three-dimensional imaging lidar system based on high speed pseudorandom modulation and photon counting[J]. Chinese Optics Letters, 2016, 14(11): 111101-111105. doi: 10.3788/COL201614.111101
|
[17] |
ZHANG Z J, XU Y N, WU L, et al. Photon counting range-intensity image strategy in low-light level environments[J]. Optics Letters, 2014, 39(8): 2467-2470. doi: 10.1364/OL.39.002467
|
[18] |
陈勇强, 贺岩, 罗远, 等. 基于盖革APD阵列脉冲式三维成像激光雷达系统[J]. 中国激光,2023,50(2):0210001. doi: 10.3788/CJL220683
CHEN Y Q, HE Y, LUO Y, et al. Pulsed three-dimensional imaging lidar system based on Geiger-mode APD array[J]. Chinese Journal of Lasers, 2023, 50(2): 0210001. doi: 10.3788/CJL220683
|
[19] |
韩超, 刘志勇, 刘德伟, 等. 单光子激光雷达中时间走时时差校准算法研究[J]. 中国光学,2023,16(2):271-280.
HAN CH, LIU ZH Y, LIU D W, et al. Time walk correction algorithm for single-photon LiDAR systems[J]. Chinese Optics, 2023, 16(2): 271-280. (查阅网上资料, 未找到本条文献信息, 请确认).
|
[20] |
高翔, 马玉波, 王晨, 等. 高精度激光雷达点云配准算法综述[J]. 中国光学,2022,15(3):495-509.
GAO X, MA Y B, WANG CH, et al. Review of high-precision point cloud registration algorithms for LiDAR[J]. Chinese Optics, 2022, 15(3): 495-509. (查阅网上资料, 未找到本条文献信息, 请确认).
|