Citation: | LIU Zi-wei, JIANG Lun, HE Xin-tong, WANG Ruo-qing. Analysis and suppression of stray light in the 557.7 nm band spaceborne doppler asymmetric spatial heterodyne interferometer for wind field detection[J]. Chinese Optics. doi: 10.37188/CO.2025-0060 |
The impact of atmospheric background radiation on imaging quality in Doppler Asymmetric Spatial Heterodyne (DASH) interferometers for wind field detection is investigated, and a stray light suppression structure is designed. Utilizing orbital parameters and observation geometry, the influence of atmospheric background radiation on the signal-to-noise ratio (SNR) at varying altitudes is analyzed. Subsequently, a baffle is designed considering system parameters and SNR variation patterns, with its suppression efficacy evaluated via point source transmittance (PST). Results demonstrate that atmospheric background radiation intensifies with decreasing altitude, leading to progressive SNR degradation. PST curves indicate stable in-field PST unaffected by the baffle, preserving target light detection capability. Out-of-field PST decreases with increasing off-axis angle, dropping below 10−8 near the critical stray light suppression angle of 1.07°. The proposed suppression design fulfills system requirements for atmospheric background radiation mitigation.
[1] |
韩斌, 冯玉涛, 王劲松, 等. 中高层大气风场探测光学干涉仪载荷发展综述(特邀)[J]. 光学学报,2024,44(18):1800008. doi: 10.3788/AOS240679
HAN B, FENG Y T, WANG J S, et al. Overview of optical interferometer payloads for detecting wind fields in middle and upper atmosphere (invited)[J]. Acta Optica Sinica, 2024, 44(18): 1800008. (in Chinese). doi: 10.3788/AOS240679
|
[2] |
SHEPHERD G G. Development of wind measurement systems for future space missions[J]. Acta Astronautica, 2015, 115: 206-217. doi: 10.1016/j.actaastro.2015.05.015
|
[3] |
SHEPHERD G G, THUILLIER G, CHO Y M, et al. The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: a 20 year perspective[J]. Reviews of Geophysics, 2012, 50(2): RG2007.
|
[4] |
GAULT W A, BRUN J F, DESAULNIERS M D L, et al. Design and on-orbit performance of the WINDII baffle system[J]. Proceedings of SPIE, 1993, 1753: 189-195. doi: 10.1117/12.140701
|
[5] |
ENGLERT C R, HARLANDER J M, BROWN C M, et al. Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI): instrument design and calibration[J]. Space Science Reviews, 2017, 212(1-2): 553-584. doi: 10.1007/s11214-017-0358-4
|
[6] |
BLAMONT J E, LUTON J M. Geomagnetic effect on the neutral temperature of the F region during the magnetic storm of September 1969[J]. Journal of Geophysical Research, 1972, 77(19): 3534-3556. doi: 10.1029/JA077i019p03534
|
[7] |
HAYS P B, KILLEEN T L, KENNEDY B C. The Fabry-Perot interferometer on dynamics explorer[J]. Space Science Instrumentation, 1981, 5(4): 395-416.
|
[8] |
HAYS P B, ABREU V J, DOBBS M E, et al. The high-resolution doppler imager on the upper atmosphere research satellite[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D6): 10713-10723. doi: 10.1029/93JD00409
|
[9] |
王道琦, 王后茂, 何微微, 等. 1.27
WANG D Q, WANG H M, HE W W, et al. Radiative transfer characteristics of the 1.27
|
[10] |
刘欢, 江伦, 张晓菲, 等. 557.7 nm波段地基探测风场的多普勒非对称空间外差干涉仪研制(英文)[J]. 中国光学(中英文), 2023, 16(5): 1226-1242.
LIU H, JIANG L, ZHANG X F, et al. Development of a doppler asymmetric spatial heterodyne interferometer for ground-based wind field detection at the 557.7 nm wavelength[J]. Chinese Optics, 2023, 16(5): 1226-1242. .
|
[11] |
陈洁婧. 多普勒差分干涉光谱仪风速反演技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2017.
CHEN J J. Study on Doppler asymmetric spatial heterodyne spectrometer in wind velocity retrieval[D]. Xi’an: Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2017. (in Chinese).
|
[12] |
王锦疆. 星载实条纹空间外差干涉测风技术研究[D]. 长春: 长春理工大学, 2024.
WANG J J. Research on spaceborne real-fringe spatial heterodyne interferometry wind measurement technology[D]. Changchun: Changchun University of Science and Technology, 2024. (in Chinese).
|
[13] |
段维铮. 极光的辐射特性与图像压缩编码[D]. 西安: 西安电子科技大学, 2014.
DUAN W Z. Radiance characters of aurora and image compression encoding[D]. Xi’an: Xidian University, 2014. (in Chinese).
|
[14] |
陈醒, 胡春晖, 彦昌翔, 等. 大视场空间可见光相机的杂散光分析与抑制[J]. 中国光学,2019,12(3):678-685. doi: 10.3788/co.20191203.0678
CHEN X, HU CH H, YAN CH X, et al. Analysis and suppression of space stray light of visible cameras with wide field of view[J]. Chinese Optics, 2019, 12(3): 678-685. (in Chinese). doi: 10.3788/co.20191203.0678
|
[15] |
周星宇, 孙亮, 潘俏, 等. 大相对孔径激光测距接收光学系统及杂散光抑制[J]. 激光与光电子学进展,2024,61(5):0528001.
ZHOU X Y, SUN L, PAN Q, et al. Large relative aperture receiving optical system and stray light suppression for laser ranging[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0528001. (in Chinese).
|
[16] |
刘琳岚. 临边观测条件下的杂散光抑制方法研究[D]. 西安: 西安工业大学, 2024.
LIU L L. Research on the suppression method of stray light under limb-viewing conditions[D]. Xi’an: Xi’an Technological University, 2024. (in Chinese).
|
[17] |
王虎, 陈钦芳, 马占鹏, 等. 杂散光抑制与评估技术发展与展望(特邀)[J]. 光子学报,2022,51(7):0751406. doi: 10.3788/gzxb20225107.0751406
WANG H, CHEN Q F, MA ZH P, et al. Development and prospect of stray light suppression and evaluation technology (invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751406. (in Chinese). doi: 10.3788/gzxb20225107.0751406
|