Turn off MathJax
Article Contents
GONG Zhong-xuan, LI Zi-fan, GONG Jun-hao, HAN Qi-rui, YU Bi-jun, MAO Hong-min, FAN Li-na, LU Huan-jun, CAO Zhao-liang. Research on high-speed measurement of Mueller matrix based on overdriving technique[J]. Chinese Optics. doi: 10.37188/CO.2025-0055
Citation: GONG Zhong-xuan, LI Zi-fan, GONG Jun-hao, HAN Qi-rui, YU Bi-jun, MAO Hong-min, FAN Li-na, LU Huan-jun, CAO Zhao-liang. Research on high-speed measurement of Mueller matrix based on overdriving technique[J]. Chinese Optics. doi: 10.37188/CO.2025-0055

Research on high-speed measurement of Mueller matrix based on overdriving technique

cstr: 32171.14.CO.2025-0055
Funds:  Supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX24_3425); This work was supported by Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135); the National Natural Science Foundation of China (No. 22205155); the Natural Science Foundation of Jiangsu Province (No. BK20220640); the Natural Science Research of Jiangsu Higher Education Institutions of China (No. 22KJB150011)
More Information
  • This paper proposes a high-speed Mueller matrix measurement method based on an overdriving technique exerted on a liquid crystal variable retarder. First, a liquid crystal-based simulation model of the Mueller matrix measurement system is established, which helps to confirm the feasibility of the system. Next, an overdriving scheme for the liquid crystal variable retarder is introduced to shorten the polarization-state switching time. Finally, the Mueller matrices of air, a polarizer, and a quarter-wave plate are measured experimentally. The results show that the generation frequency of six polarization states increases from 71 Hz to 417 Hz, and the Mueller matrix measurement frequency increases from 10 Hz to 60 Hz, representing approximately a sixfold improvement. Furthermore, the mean squared error (MSE) of the measurements is below 0.0004. The extinction ratio exceeds 750:1. And the ellipsometric error is below 1.06%. These results demonstrate that the overdriving method enables high-speed Mueller matrix measurements, thereby facilitating applications in real-time inspection fields such as dynamic polarization analysis, online quality inspection of optical components, and biomedical imaging.

     

  • loading
  • [1]
    SI L, HUANG T Y, WANG X J. Deep learning Mueller matrix feature retrieval from a snapshot Stokes image[J]. Optics Express, 2022, 30(6): 8676-8689. doi: 10.1364/OE.451612
    [2]
    DONG H, ZHANG H L, HU D J J. Polar decomposition of Jones matrix and Mueller matrix of coherent Rayleigh backscattering in single-mode fibers[J]. Sensors, 2024, 24(6): 1760. doi: 10.3390/s24061760
    [3]
    SINGH M D, GHOSH N, VITKIN I A. Mueller matrix polarimetry in biomedicine: enabling technology, biomedical applications, and future prospects[M]//RAMELLA-ROMAN J C, NOVIKOVA T. Polarized Light in Biomedical Imaging and Sensing: Clinical and Preclinical Applications. Cham: Springer, 2022: 61-103.
    [4]
    ZHANG Y N, WU J Y, JIA L N, et al. Advanced optical polarizers based on 2D materials[J]. npj Nanophotonics, 2024, 1(1): 28. doi: 10.1038/s44310-024-00028-3
    [5]
    GE J G, YUAN B, CHEN H J, et al. Anisotropy in microstructural features and tensile performance of laser powder bed fusion NiTi alloys[J]. Journal of Materials Research and Technology, 2023, 24: 8656-8668. doi: 10.1016/j.jmrt.2023.05.046
    [6]
    SOLEILLET P. Sur les paramètres caractérisant la polarisation partielle de la lumière dans les phénomènes de fluorescence[J]. Annales De Physique, 1929, 10(12): 23-97. doi: 10.1051/anphys/192910120023
    [7]
    MUELLER H. The foundation of optics[J]. Journal of the Optical Society of America, 1948, 38(7): 661-669.
    [8]
    BICKEL W S, BAILEY W M. Stokes vectors, Mueller matrices, and polarized scattered light[J]. American Journal of Physics, 1985, 53(5): 468-478. doi: 10.1119/1.14202
    [9]
    GOLDSTEIN D H, CHIPMAN R A. Error analysis of a Mueller matrix polarimeter[J]. Journal of the Optical Society of America A, 1990, 7(4): 693-700. doi: 10.1364/JOSAA.7.000693
    [10]
    LU S Y, CHIPMAN R A. Interpretation of Mueller matrices based on polar decomposition[J]. Journal of the Optical Society of America A, 1996, 13(5): 1106-1113. doi: 10.1364/JOSAA.13.001106
    [11]
    FUJIWARA H. Spectroscopic Ellipsometry: Principles and Applications[M]. Chichester: John Wiley & Sons, 2007.
    [12]
    GU H G, CHEN X G, ZHANG CH W, et al. Study of the retardance of a birefringent waveplate at tilt incidence by Mueller matrix ellipsometer[J]. Journal of Optics, 2018, 20(1): 015401. doi: 10.1088/2040-8986/aa9b05
    [13]
    赵鑫鑫, 宋茂新, 许智龙, 等. 离轴三反望远物镜的穆勒矩阵测量[J]. 光学学报,2023,43(12):1212004. doi: 10.3788/AOS221873

    ZHAO X X, SONG M X, XU ZH L, et al. Mueller matrix measurement of off-axis three-mirror telescope objective[J]. Acta Optica Sinica, 2023, 43(12): 1212004. (in Chinese). doi: 10.3788/AOS221873
    [14]
    LAUDE-BOULESTEIX B, DE MARTINO A, DRÉVILLON B, et al. Mueller polarimetric imaging system with liquid crystals[J]. Applied Optics, 2004, 43(14): 2824-2832. doi: 10.1364/AO.43.002824
    [15]
    AAS L M S, ELLINGSEN P G, KILDEMO M. Near infra-red Mueller matrix imaging system and application to retardance imaging of strain[J]. Thin Solid Films, 2011, 519(9): 2737-2741. doi: 10.1016/j.tsf.2010.12.093
    [16]
    SHENG SH, CHEN X G, CHEN CH, et al. Design and calibration of a Mueller matrix microscope based on liquid crystal variable retarders[J]. Thin Solid Films, 2023, 770: 139779. doi: 10.1016/j.tsf.2023.139779
    [17]
    陈冬静, 崔宏青, 冯亚云, 等. 一种新的测量扭曲向列相液晶盒盒厚和扭曲角的Stokes矢量法[J]. 液晶与显示,2007,22(6):662-667. doi: 10.3969/j.issn.1007-2780.2007.06.004

    CHEN D J, CUI H Q, FENG Y Y, et al. Novel Stokes parameter method for determination of cell thickness and twist angle of twisted nematic liquid crystal cells[J]. Chinese Journal of Liquid Crystals and Displays, 2007, 22(6): 662-667. (in Chinese). doi: 10.3969/j.issn.1007-2780.2007.06.004
    [18]
    李作恩, 鞠学平, 胡春晖, 等. 通道型偏振光谱仪望远镜组偏振效应分析与优化[J]. 液晶与显示,2023,38(12):1728-1735. doi: 10.37188/CJLCD.2023-0049

    LI Z E, JU X P, HU CH H, et al. Analysis and optimization of polarization effect of telescope group of channel polarization spectrometer[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(12): 1728-1735. (in Chinese). doi: 10.37188/CJLCD.2023-0049
    [19]
    杨志勇, 张志伟, 蔡伟, 等. 基于Mueller矩阵的目标偏振特性分析[J]. 光学学报,2023,43(1):0112005. doi: 10.3788/AOS221004

    YANG ZH Y, ZHANG ZH W, CAI W, et al. Analysis of polarization characteristics of targets based on Mueller matrix[J]. Acta Optica Sinica, 2023, 43(1): 0112005. (in Chinese). doi: 10.3788/AOS221004
    [20]
    史文雄, 卢绮涵, 梁如标, 等. 用于液晶调控器件的过压驱动技术进展[J]. 液晶与显示,2024,39(3):384-392. doi: 10.37188/CJLCD.2024-0049

    SHI W X, LU Q H, LIANG R B, et al. Development of overdriving technology for liquid crystal modulatory devices[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(3): 384-392. (in Chinese). doi: 10.37188/CJLCD.2024-0049
    [21]
    GUO H Y, LI Q, XU Y J, et al. Line of sight correction of high-speed liquid crystal using overdriving technology[J]. Electronics, 2020, 9(9): 1477. doi: 10.3390/electronics9091477
    [22]
    芦永军, 曹召良, 曲艳玲, 等. 液晶波前校正器动态位相响应特性研究[J]. 液晶与显示,2012,27(6):730-735. doi: 10.3788/YJYXS20122706.0730

    LU Y J, CAO ZH L, QU Y L, et al. Dynamic phase response of liquid crystal wavefront corrector[J]. Chinese Journal of Liquid Crystals and Displays, 2012, 27(6): 730-735. (in Chinese). doi: 10.3788/YJYXS20122706.0730
    [23]
    杜莹, 陈梅蕊, 刘禹彤, 等. 基于掩模光刻的液晶波前校正器设计与制备[J]. 中国光学(中英文),2024,17(2):324-333. doi: 10.37188/CO.2023-0137

    DU Y, CHEN M R, LIU Y T, et al. Design and fabrication of liquid crystal wavefront corrector based on mask lithography[J]. Chinese Optics, 2024, 17(2): 324-333. (in Chinese). doi: 10.37188/CO.2023-0137
    [24]
    GAMEL O, JAMES D F V. Measures of quantum state purity and classical degree of polarization[J]. Physical Review A, 2012, 86(3): 033830. doi: 10.1103/PhysRevA.86.033830
    [25]
    张郁文, 刘丙才, 王红军, 等. 同步相移横向剪切干涉中偏振器件的误差建模[J]. 中国光学(中英文),2024,17(3):640-647. doi: 10.37188/CO.2023-0152

    ZHANG Y W, LIU B C, WANG H J, et al. Error modeling of polarization devices in simultaneous phase-shifted lateral shearing interferometry[J]. Chinese Optics, 2024, 17(3): 640-647. (in Chinese). doi: 10.37188/CO.2023-0152
    [26]
    王启东, 穆全全, 刘璐璐, 等. 宽波段大视角液晶偏振转换器研究进展[J]. 液晶与显示,2024,39(5):683-696. doi: 10.37188/CJLCD.2024-0063

    WANG Q D, MU Q Q, LIU L L, et al. Research progress on liquid crystal polarization converter with a large field of view and broadband[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(5): 683-696. (in Chinese). doi: 10.37188/CJLCD.2024-0063
    [27]
    史浩东, 卢琦, 赵义武, 等. 基于阵列光学的快速多维度成像制导光学系统设计[J]. 中国光学(中英文),2024,17(6):1418-1430. doi: 10.37188/CO.2023-0206

    SHI H D, LU Q, ZHAO Y W, et al. Design of a fast multi-dimensional imaging guidance optical system based on array optics[J]. Chinese Optics, 2024, 17(6): 1418-1430. (in Chinese). doi: 10.37188/CO.2023-0206
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(5)

    Article views(2) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return