Volume 18 Issue 3
May  2025
Turn off MathJax
Article Contents
XING Cheng-wen, XU Tian-yao, MA Chao-qun, LUAN Su-qi, LI Yue, MENG Fan-chao, MENG Ling-qiang, LV Gang, YIN Xiong-fei, JIA Jian-jun. Cavity alignment method based on mode energy gradient ascent[J]. Chinese Optics, 2025, 18(3): 682-690. doi: 10.37188/CO.2025-0053
Citation: XING Cheng-wen, XU Tian-yao, MA Chao-qun, LUAN Su-qi, LI Yue, MENG Fan-chao, MENG Ling-qiang, LV Gang, YIN Xiong-fei, JIA Jian-jun. Cavity alignment method based on mode energy gradient ascent[J]. Chinese Optics, 2025, 18(3): 682-690. doi: 10.37188/CO.2025-0053

Cavity alignment method based on mode energy gradient ascent

cstr: 32171.14.CO.2025-0053
Funds:  Supported by National Key R & D Program of China (No. 2024YFC2206900, No. 2021YFC2201804)
More Information
  • Addressing the issue of beam alignment with Fabry-Pérot cavities, this paper proposes an adaptive dual-mirror step adjustment method based on the gradient ascent of transmitted resonant mode energy to achieve cavity coupling. First, leveraging the relationship between the reflection angles of the dual mirrors and the beam pointing, independent adjustment of the incident beam position and angle was proposed. Second, the EfficientNet neural network was used to classify resonant mode images, enabling identification of different mode images. Third, the energy gradient of the cavity mode was utilized for adaptively dual mirrors step adjustment, enabling low-cost and efficient cavity coupling of both fundamental and higher-order modes. The beam pointing adjustment method proposed will offer a novel solution for coupling lasers with Fabry-Pérot cavities in ultra-stable lasers and gravitational wave detection.

     

  • loading
  • [1]
    AASI J, ABBOTT B P, ABBOTT R, et al. Advanced LIGO[J]. Classical and Quantum Gravity, 2015, 32(7): 074001. doi: 10.1088/0264-9381/32/7/074001
    [2]
    AASI J, ABADIE J, ABBOTT B P, et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 2013, 7(8): 613-619. doi: 10.1038/nphoton.2013.177
    [3]
    DANZMANN K, PRINCE T, BINETRUY P, et al. LISA: unveiling a hidden universe[R]. Paris: European Space Agency, 2011.
    [4]
    BLOOM B, NICHOLSON T L, WILLIAMS J R, et al. An optical lattice clock with accuracy and stability at the 10−18 level[J]. Nature, 2014, 506(7486): 71-75. doi: 10.1038/nature12941
    [5]
    DREVER R W P, HALL J L, KOWALSKI F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.
    [6]
    CAHILLANE C, MANSELL G L, SIGG D. Laser frequency noise in next generation gravitational wave detectors[J]. Optics Express, 2021, 29: 42144-42161. doi: 10.1364/OE.439253
    [7]
    ROSI G, SORRENTINO F, CACCIAPUOTI L, et al. Precision measurement of the Newtonian gravitational constant using cold atoms[J]. Nature, 2014, 510(7506): 518-521. doi: 10.1038/nature13433
    [8]
    KESSLER T, HAGEMANN C, GREBING C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692. doi: 10.1038/nphoton.2012.217
    [9]
    ANDERSON D Z. Alignment of resonant optical cavities[J]. Applied Optics, 1984, 23(17): 2944-2949. doi: 10.1364/AO.23.002944
    [10]
    MAVALVALA N. Alignment issues in laser interferometric gravitational-wave detectors[D]. Cambridge: Massachusetts Institute of Technology, 1997.
    [11]
    BOND C, BROWN D, FREISE A, et al. Interferometer techniques for gravitational-wave detection[J]. Living Reviews in Relativity, 2016, 19(1): 3. doi: 10.1007/s41114-016-0002-8
    [12]
    MORRISON E, MEERS B J, ROBERTSON D I, et al. Automatic alignment of optical interferometers[J]. Applied Optics, 1994, 33(22): 5041-5049. doi: 10.1364/AO.33.005041
    [13]
    MORRISON E, MEERS B J, ROBERTSON D I, et al. Experimental demonstration of an automatic alignment system for optical interferometers[J]. Applied Optics, 1994, 33(22): 5037-5040. doi: 10.1364/AO.33.005037
    [14]
    GROTE H, HEINZEL G, FREISE A, et al. The automatic alignment system of GEO 600[J]. Classical and Quantum Gravity, 2002, 19(7): 1849-1855. doi: 10.1088/0264-9381/19/7/384
    [15]
    SAYEH M R, BILGER H R, HABIB T. Optical resonator with an external source: excitation of the Hermite-Gaussian modes[J]. Applied Optics, 1985, 24(22): 3756-3761. doi: 10.1364/AO.24.003756
    [16]
    TAO L, KELLEY-DERZON J, GREEN A C, et al. Power coupling losses for misaligned and mode-mismatched higher-order Hermite–Gauss modes[J]. Optics Letters, 2021, 46(11): 2694-2697. doi: 10.1364/OL.426999
    [17]
    HOU Y. Control system for mirror tilting by deep learning[D]. Tokyo: Tokyo Institute of Technology, 2023.
    [18]
    MENG F CH, LI Z CH, LI J Q, et al. An active method for coupling laser with a high-finesse Fabry–Pérot cavity in ultra-stable lasers[J]. Optics & Laser Technology, 2024, 171: 110371.
    [19]
    DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[C]. Proceedings of the 9th International Conference on Learning Representations, ICLR, 2021.
    [20]
    WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2023: 7464-7475.
    [21]
    KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, IEEE, 2023: 4015-4026.
    [22]
    SOROKIN D, ULANOV A, SAZHINA E, et al. Interferobot: aligning an optical interferometer by a reinforcement learning agent[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Curran Associates Inc. , 2020: 1110.
    [23]
    SHAO R, ZHANG G, GONG X. Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components[J]. Photonics Research, 2022, 10(8): 1868-1876. doi: 10.1364/PRJ.449570
    [24]
    QIN J Y, KINDER K, JADHAV S, et al. Automated alignment of an optical cavity using machine learning[J]. Classical and Quantum Gravity, 2025, 42(4): 045003. doi: 10.1088/1361-6382/ada864
    [25]
    TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]. Proceedings of the 36th International Conference on Machine Learning, ICML, 2019: 6105-6114.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article views(137) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return