Citation: | ZHANG Zhen-yu, ZHANG Wei, LIU Rui, ZHANG Jing-ying, LI Wen-hao. Simultaneous measurement of radial angular displacement and longitudinal linear displacement with cascade metasurfaces[J]. Chinese Optics. doi: 10.37188/CO.2025-0033 |
To solve the problem of existing metasurface displacement measurement techniques unable to measure multiple physical quantities simultaneously, this paper proposes a metasurface cascade structure that can measure radial angular displacement and longitudinal line displacement simultaneously. First, the working principle of displacement measurement is described according to the joint phase modulation of circular polarized light by a cascade metasurface. Second, the displacement information carried by the phase delay is analyzed using the Jones transport matrix, and the angular and linear displacements are mathematically characterized. Then, the design objective is used as a constraint to optimize unit structure parameters and create metasurface models. Finally, the finite-difference time-domain method is used to simulate the metasurface structures, validate the method's feasibility, and evaluate the device's measurement performance. The results show that the angular displacement sensitivity was
[1] |
KRIEG M, FLÄSCHNER G, ALSTEENS D, et al. Atomic force microscopy-based mechanobiology[J]. Nature Reviews Physics, 2019, 1(1): 41-57.
|
[2] |
KNOBEL R G, CLELAND A N. Nanometre-scale displacement sensing using a single electron transistor[J]. Nature, 2003, 424(6946): 291-293. doi: 10.1038/nature01773
|
[3] |
ORJI N G, BADAROGLU M, BARNES B M, et al. Metrology for the next generation of semiconductor devices[J]. Nature Electronics, 2018, 1(10): 532-547. doi: 10.1038/s41928-018-0150-9
|
[4] |
ADE P A R, AGHANIM N, ANSARI R, et al. Planck early results. VI. The high frequency instrument data processing[J]. Astronomy & Astrophysics, 2011, 536: A6.
|
[5] |
DO K D. Robust adaptive tracking control of underactuated ODINs under stochastic sea loads[J]. Robotics and Autonomous Systems, 2015, 72: 152-163. doi: 10.1016/j.robot.2015.05.007
|
[6] |
EL MELEGY A, YOUNES M A. Positioning errors and accuracy of CNC machine tools[J]. Engineering Research Express, 2024, 6(4): 045415. doi: 10.1088/2631-8695/ad8ac1
|
[7] |
ZHOU S Y, JIANG R L, ZHANG R X, et al. Absolute angular position measurement by dual-comb spectroscopy of an autocollimation diffracted beam[J]. Optics Letters, 2023, 48(5): 1104-1107. doi: 10.1364/OL.479328
|
[8] |
SONG N F, XU X B, ZHANG Z CH, et al. Advanced interferometric fiber optic gyroscope for inertial sensing: a review[J]. Journal of Lightwave Technology, 2023, 41(13): 4023-4034. doi: 10.1109/JLT.2023.3260839
|
[9] |
YE G Y, YUAN T, ZHANG Y L, et al. Recent progress on laser interferometry based on vortex beams: status, challenges, and perspectives[J]. Optics and Lasers in Engineering, 2024, 172: 107871. doi: 10.1016/j.optlaseng.2023.107871
|
[10] |
吕强, 王玮, 刘兆武, 等. 五维自由度衍射光栅精密测量系统(英文)[J]. 中国光学,2020,13(1):189-202. doi: 10.3788/co.20201301.0189
LV Q, WANG W, LIU ZH W, et al. Grating-based precision measurement system for five-dimensional measurement[J]. Chinese Optics, 2020, 13(1): 189-202. doi: 10.3788/co.20201301.0189
|
[11] |
CHEN Y L, SHIMIZU Y, TAMADA J, et al. Laser autocollimation based on an optical frequency comb for absolute angular position measurement[J]. Precision Engineering, 2018, 54: 284-293. doi: 10.1016/j.precisioneng.2018.06.005
|
[12] |
ZHOU S Y, LE V, XIONG SH L, et al. Dual-comb spectroscopy resolved three-degree-of-freedom sensing[J]. Photonics Research, 2021, 9(2): 243-251. doi: 10.1364/PRJ.412898
|
[13] |
ZHANG W, LI W H, ZHANG T, et al. A large-size and polarization-independent two dimensional grating fabricated by scanned reactive-ion-beam etching[J]. Nanophotonics, 2022, 11(21): 4649-4657. doi: 10.1515/nanoph-2022-0371
|
[14] |
ZHOU W Y, LIU ZH W, SUN Y J, et al. Bidirectional Littrow double grating interferometry for quadruple optical interpolation[J]. Optics & Laser Technology, 2024, 175: 110751.
|
[15] |
ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2
|
[16] |
DENG L G, DENG J, GUAN ZH Q, et al. Malus-metasurface-assisted polarization multiplexing[J]. Light: Science & Applications, 2020, 9: 101.
|
[17] |
周俊焯, 郝佳, 余晓畅, 等. 面向偏振成像的超构表面研究进展[J]. 中国光学(中英文),2023,16(5):973-995. doi: 10.37188/CO.2022-0234
ZHOU J ZH, HAO J, YU X CH, et al. Recent advances in metasurfaces for polarization imaging[J]. Chinese Optics, 2023, 16(5): 973-995. (in Chinese). doi: 10.37188/CO.2022-0234
|
[18] |
ZHENG P X, DAI Q, LI Z L, et al. Metasurface-based key for computational imaging encryption[J]. Science Advances, 2021, 7(21): eabg0363. doi: 10.1126/sciadv.abg0363
|
[19] |
张志东, 张慧男, 梁洁, 等. 基于Au纳米平行双棒超表面阵列的双Fano共振和折射率传感器特性研究(英文)[J]. 中国光学(中英文),2023,16(4):961-971. doi: 10.37188/CO.EN-2023-0008
ZHANG ZH D, ZHANG H N, LIANG J, et al. Double Fano resonance and refractive index sensors based on parallel-arranged Au nanorod dimer metasurface arrays[J]. Chinese Optics, 2023, 16(4): 961-971. doi: 10.37188/CO.EN-2023-0008
|
[20] |
YUE F Y, AGLIERI V, PICCOLI R, et al. Highly sensitive polarization rotation measurement through a high-order vector beam generated by a metasurface[J]. Advanced Materials Technologies, 2020, 5(5): 1901008. doi: 10.1002/admt.201901008
|
[21] |
GU W H, ZHANG X F, LIU J CH, et al. Optical angle barcodes enabled by a pixelated metasurface for absolute micro-angle measurement[J]. Laser & Photonics Reviews, 2024, 18(2): 2300831.
|
[22] |
ZANG H F, XI ZH, ZHANG ZH Y, et al. Ultrasensitive and long-range transverse displacement metrology with polarization-encoded metasurface[J]. Science Advances, 2022, 8(41): eadd1973. doi: 10.1126/sciadv.add1973
|
[23] |
CAO D L, LI D, HU J Y, et al. Off-axis bifocal metalens for displacement measurement[J]. Nanotechnology, 2024, 35(21): 215203. doi: 10.1088/1361-6528/ad26d7
|
[24] |
PALIK E D. Handbook of Optical Constants of Solids[M]. Orlando: Academic Press, 1997.
|
[25] |
洪鹏, 胡珑夏雨, 周子昕, 等. 光子学逆向设计研究进展(特邀)[J]. 光子学报,2023,52(6):0623001. doi: 10.3788/gzxb20235206.0623001
HONG P, HU L X Y, ZHOU Z X, et al. Advances of inverse design in photonics (invited)[J]. Acta Photonica Sinica, 2023, 52(6): 0623001. (in Chinese). doi: 10.3788/gzxb20235206.0623001
|
[26] |
李涵梦. 光学超构透镜的制备与性能研究[D]. 南京: 南京大学, 2021.
LI H M. Fabrication and performance of optical metalenses[D]. Nanjing: Nanjing University, 2021. (in Chinese).
|