Citation: | QIN Jia-jia, SONG Qiang, LIU Xiang-biao, ZHANG Shan-wen, DUAN Hui-gao, ZHOU Chang-he. Research on a domestic 3D visualization module for diffractive waveguide simulation based on ray-field tracing[J]. Chinese Optics. doi: 10.37188/CO.2025-0003 |
Diffractive waveguides have emerged as a particularly promising solution for augmented reality (AR) near-eye display technologies. These waveguides are characterized by their light weight, wide field of view, and large eyebox. However, most commercially available AR waveguide simulation software has been developed by foreign companies, and there has been little advancement in domestic 3D visualization software for optical waveguide design and simulation. The present study is, to the best of our knowledge, the first to develop 3D visualization module for optical waveguide design and simulation based on ray-field tracing. Using this module, a two-dimensional exit-pupil-expansion diffractive waveguide has been designed, and a systematic design workflow is demonstrated. The workflow integrates
[1] |
史晓刚, 薛正辉, 李会会, 等. 增强现实显示技术综述[J]. 中国光学,2021,14(5):1146-1161. doi: 10.37188/CO.2021-0032
SHI X G, XUE ZH H, LI H H, et al. Review of augmented reality display technology[J]. Chinese Optics, 2021, 14(5): 1146-1161. (in Chinese). doi: 10.37188/CO.2021-0032
|
[2] |
DING Y Q, YANG Q, LI Y N Q, et al. Waveguide-based augmented reality displays: perspectives and challenges[J]. eLight, 2023, 3(1): 24. doi: 10.1186/s43593-023-00057-z
|
[3] |
ROLLAND J P, GOODSELL J. Waveguide-based augmented reality displays: a highlight[J]. Light: Science & Applications, 2024, 13(1): 22.
|
[4] |
LU Y Q, LI Y. Planar liquid crystal polarization optics for near-eye displays[J]. Light: Science & Applications, 2021, 10(1): 122.
|
[5] |
SONG W T, LIANG X N, LI SH Q, et al. Retinal projection near‐eye displays with huygens’ metasurfaces[J]. Advanced Optical Materials, 2023, 11(5): 2202348. doi: 10.1002/adom.202202348
|
[6] |
PARK J H, LEE B. Holographic techniques for augmented reality and virtual reality near-eye displays[J]. Light: Advanced Manufacturing, 2022, 3(1): 137-150.
|
[7] |
CHENG D W, DUAN J X, CHEN H L, et al. Freeform OST-HMD system with large exit pupil diameter and vision correction capability[J]. Photonics Research, 2022, 10(1): 21-32. doi: 10.1364/PRJ.440018
|
[8] |
CHENG D W, WANG Q W, LIU Y, et al. Design and manufacture AR head-mounted displays: a review and outlook[J]. Light: Advanced Manufacturing, 2021, 2(3): 350-369.
|
[9] |
JANG C, BANG K, CHAE M, et al. Waveguide holography for 3D augmented reality glasses[J]. Nature Communications, 2024, 15(1): 66. doi: 10.1038/s41467-023-44032-1
|
[10] |
DING Y Q, LI Y N Q, YANG Q, et al. Design optimization of polarization volume gratings for full-color waveguide-based augmented reality displays[J]. Journal of the Society for Information Display, 2023, 31(5): 380-386. doi: 10.1002/jsid.1206
|
[11] |
XIONG J H, WU S T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications[J]. eLight, 2021, 1(1): 3. doi: 10.1186/s43593-021-00003-x
|
[12] |
LI ZH, LUO X H, WANG J, et al. Phase space framework enables a variable-scale diffraction model for coherent imaging and display[J]. Photonics Research, 2024, 9(12): 1937-1953.
|
[13] |
WENG X Y, SONG Q, LI X M, et al. Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen[J]. Nature Communications, 2018, 9(1): 5035. doi: 10.1038/s41467-018-07282-y
|
[14] |
CHENG H H, CHEN Y, CHRISTOPHE A, et al. Optimization and tolerance for an exit pupil expander with 2D grating as out-coupler[J]. Proceedings of SPIE, 2023, 12449: 124490X.
|
[15] |
YAN SH F, ZHANG E Q, GUO J D, et al. Eyebox uniformity optimization over the full field of view for optical waveguide displays based on linked list processing[J]. Optics Express, 2022, 30(21): 38139-38151. doi: 10.1364/OE.472089
|
[16] |
NI D W, CHENG D W, LIU Y, et al. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization[J]. Optics Express, 2022, 30(14): 24523-24543. doi: 10.1364/OE.462384
|
[17] |
LI Z Y, GAO CH, LI H F, et al. Angular uniformity improvement of diffractive waveguide display based on region geometry optimization[J]. Applied Optics, 2024, 63(10): 2494-2502. doi: 10.1364/AO.515428
|
[18] |
LEVOLA T. Diffractive optics for virtual reality displays[J]. Journal of the Society for Information Display, 2006, 14(5): 467-475. doi: 10.1889/1.2206112
|
[19] |
KONG D Q, ZHAO ZH, SHI X G, et al. Optimization of gratings in a diffractive waveguide using relative-direction-cosine diagrams[J]. Optics Express, 2021, 29(22): 36720-36733. doi: 10.1364/OE.433515
|
[20] |
李俊昌. 衍射计算及数字全息[M]. 北京: 科学出版社, 2014.
LI J CH. Diffration Calculation and Digital Holography[M]. Beijing: Science Press, 2014. (in Chinese) (查阅网上资料, 未找到对应的英文翻译, 请确认).
|
[21] |
GOODMAN J W. Introduction to Fourier Optics[M]. 3rd ed. Englewood: Roberts and Company Publishers, 2005.
|
[22] |
MOHARAM M G, GRANN E B, POMMET D A, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America A, 1995, 12(5): 1068-1076. doi: 10.1364/JOSAA.12.001068
|
[23] |
MOHARAM M G, POMMET D A, GRANN E B, et al. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach[J]. Journal of the Optical Society of America A, 1995, 12(5): 1077-1086. doi: 10.1364/JOSAA.12.001077
|