Turn off MathJax
Article Contents
QIN Jia-jia, SONG Qiang, LIU Xiang-biao, ZHANG Shan-wen, DUAN Hui-gao, ZHOU Chang-he. Research on a domestic 3D visualization module for diffractive waveguide simulation based on ray-field tracing[J]. Chinese Optics. doi: 10.37188/CO.2025-0003
Citation: QIN Jia-jia, SONG Qiang, LIU Xiang-biao, ZHANG Shan-wen, DUAN Hui-gao, ZHOU Chang-he. Research on a domestic 3D visualization module for diffractive waveguide simulation based on ray-field tracing[J]. Chinese Optics. doi: 10.37188/CO.2025-0003

Research on a domestic 3D visualization module for diffractive waveguide simulation based on ray-field tracing

cstr: 32171.14.CO.2025-0003
Funds:  Supported by The National Natural Science Foundation of China (No. 62205124, No. U21A20509); Guangdong Provincial Pearl River Talents Program (No. 2019ZT08Z779)
More Information
  • Diffractive waveguides have emerged as a particularly promising solution for augmented reality (AR) near-eye display technologies. These waveguides are characterized by their light weight, wide field of view, and large eyebox. However, most commercially available AR waveguide simulation software has been developed by foreign companies, and there has been little advancement in domestic 3D visualization software for optical waveguide design and simulation. The present study is, to the best of our knowledge, the first to develop 3D visualization module for optical waveguide design and simulation based on ray-field tracing. Using this module, a two-dimensional exit-pupil-expansion diffractive waveguide has been designed, and a systematic design workflow is demonstrated. The workflow integrates k-domain analysis, automated layout generation of grating regions within the optical waveguide, waveguide optimization, and ray-field tracing simulations, thereby establishing a cohesive methodology for device development. The module extends beyond single-waveguide simulations to system-level analyses of near-eye displays, including micro-displays, micro-projectors, and human eye models. By bridging the microscopic and macroscopic scales, it enables holistic performance evaluation of AR optical systems, highlighting their capabilities and technical advantages. This module provides a robust and efficient platform for domestic optical engineers to advance the design and simulation of optical waveguides, thereby accelerating the industrialization and technological advancement of AR optics in China.

     

  • loading
  • [1]
    史晓刚, 薛正辉, 李会会, 等. 增强现实显示技术综述[J]. 中国光学,2021,14(5):1146-1161. doi: 10.37188/CO.2021-0032

    SHI X G, XUE ZH H, LI H H, et al. Review of augmented reality display technology[J]. Chinese Optics, 2021, 14(5): 1146-1161. (in Chinese). doi: 10.37188/CO.2021-0032
    [2]
    DING Y Q, YANG Q, LI Y N Q, et al. Waveguide-based augmented reality displays: perspectives and challenges[J]. eLight, 2023, 3(1): 24. doi: 10.1186/s43593-023-00057-z
    [3]
    ROLLAND J P, GOODSELL J. Waveguide-based augmented reality displays: a highlight[J]. Light: Science & Applications, 2024, 13(1): 22.
    [4]
    LU Y Q, LI Y. Planar liquid crystal polarization optics for near-eye displays[J]. Light: Science & Applications, 2021, 10(1): 122.
    [5]
    SONG W T, LIANG X N, LI SH Q, et al. Retinal projection near‐eye displays with huygens’ metasurfaces[J]. Advanced Optical Materials, 2023, 11(5): 2202348. doi: 10.1002/adom.202202348
    [6]
    PARK J H, LEE B. Holographic techniques for augmented reality and virtual reality near-eye displays[J]. Light: Advanced Manufacturing, 2022, 3(1): 137-150.
    [7]
    CHENG D W, DUAN J X, CHEN H L, et al. Freeform OST-HMD system with large exit pupil diameter and vision correction capability[J]. Photonics Research, 2022, 10(1): 21-32. doi: 10.1364/PRJ.440018
    [8]
    CHENG D W, WANG Q W, LIU Y, et al. Design and manufacture AR head-mounted displays: a review and outlook[J]. Light: Advanced Manufacturing, 2021, 2(3): 350-369.
    [9]
    JANG C, BANG K, CHAE M, et al. Waveguide holography for 3D augmented reality glasses[J]. Nature Communications, 2024, 15(1): 66. doi: 10.1038/s41467-023-44032-1
    [10]
    DING Y Q, LI Y N Q, YANG Q, et al. Design optimization of polarization volume gratings for full-color waveguide-based augmented reality displays[J]. Journal of the Society for Information Display, 2023, 31(5): 380-386. doi: 10.1002/jsid.1206
    [11]
    XIONG J H, WU S T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications[J]. eLight, 2021, 1(1): 3. doi: 10.1186/s43593-021-00003-x
    [12]
    LI ZH, LUO X H, WANG J, et al. Phase space framework enables a variable-scale diffraction model for coherent imaging and display[J]. Photonics Research, 2024, 9(12): 1937-1953.
    [13]
    WENG X Y, SONG Q, LI X M, et al. Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen[J]. Nature Communications, 2018, 9(1): 5035. doi: 10.1038/s41467-018-07282-y
    [14]
    CHENG H H, CHEN Y, CHRISTOPHE A, et al. Optimization and tolerance for an exit pupil expander with 2D grating as out-coupler[J]. Proceedings of SPIE, 2023, 12449: 124490X.
    [15]
    YAN SH F, ZHANG E Q, GUO J D, et al. Eyebox uniformity optimization over the full field of view for optical waveguide displays based on linked list processing[J]. Optics Express, 2022, 30(21): 38139-38151. doi: 10.1364/OE.472089
    [16]
    NI D W, CHENG D W, LIU Y, et al. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization[J]. Optics Express, 2022, 30(14): 24523-24543. doi: 10.1364/OE.462384
    [17]
    LI Z Y, GAO CH, LI H F, et al. Angular uniformity improvement of diffractive waveguide display based on region geometry optimization[J]. Applied Optics, 2024, 63(10): 2494-2502. doi: 10.1364/AO.515428
    [18]
    LEVOLA T. Diffractive optics for virtual reality displays[J]. Journal of the Society for Information Display, 2006, 14(5): 467-475. doi: 10.1889/1.2206112
    [19]
    KONG D Q, ZHAO ZH, SHI X G, et al. Optimization of gratings in a diffractive waveguide using relative-direction-cosine diagrams[J]. Optics Express, 2021, 29(22): 36720-36733. doi: 10.1364/OE.433515
    [20]
    李俊昌. 衍射计算及数字全息[M]. 北京: 科学出版社, 2014.

    LI J CH. Diffration Calculation and Digital Holography[M]. Beijing: Science Press, 2014. (in Chinese) (查阅网上资料, 未找到对应的英文翻译, 请确认).
    [21]
    GOODMAN J W. Introduction to Fourier Optics[M]. 3rd ed. Englewood: Roberts and Company Publishers, 2005.
    [22]
    MOHARAM M G, GRANN E B, POMMET D A, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America A, 1995, 12(5): 1068-1076. doi: 10.1364/JOSAA.12.001068
    [23]
    MOHARAM M G, POMMET D A, GRANN E B, et al. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach[J]. Journal of the Optical Society of America A, 1995, 12(5): 1077-1086. doi: 10.1364/JOSAA.12.001077
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(8)

    Article views(21) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return