Turn off MathJax
Article Contents
QIN Jia-jia, SONG Qiang, LIU Xiang-biao, ZHANG Shan-wen, DUAN Hui-gao, ZHOU Chang-he. Research on a domestic 3D visualization diffractive waveguide simulation module based on ray-field tracing[J]. Chinese Optics. doi: 10.37188/CO.2025-0002
Citation: QIN Jia-jia, SONG Qiang, LIU Xiang-biao, ZHANG Shan-wen, DUAN Hui-gao, ZHOU Chang-he. Research on a domestic 3D visualization diffractive waveguide simulation module based on ray-field tracing[J]. Chinese Optics. doi: 10.37188/CO.2025-0002

Research on a domestic 3D visualization diffractive waveguide simulation module based on ray-field tracing

cstr: 32171.14.CO.2025-0002
Funds:  Supported by Guangdong Basic and Applied Basic Research Foundation (No. 2025A1515011776); National Natural Science Foundation of China (No. 62205124, No. 62435019, No. U21A20509); Guangdong Provincial Pearl River Talents Program (No. 2019ZT08Z779)
More Information
  • To our knowledge, this work introduces the first domestically developed 3D visualization module for optical waveguide design and simulation based on ray-field tracing. Using this module, we engineered a two-dimensional exit-pupil-expansion diffractive waveguide, demonstrating a systematic design workflow. The workflow integrates k-domain analysis, automated layout generation of grating regions within the optical waveguide, waveguide optimization, and ray-field tracing simulations, establishing a cohesive methodology for device development. The module extends beyond single-waveguide simulations to system-level analyses of near-eye displays, incorporating micro-dislplays, micro-projectors, and human eye models. By bridging microscopic and macroscopic scales, it enables holistic performance evaluation of AR optical systems, highlighting its capabilities and technical advantages. This module provides a robust and efficient platform for domestic optical engineers to advance optical waveguide design and simulation, thereby accelerating the industrialization and technological progression of AR optics in our country.

     

  • loading
  • [1]
    史晓刚, 薛正辉, 李会会, 等. 增强现实显示技术综述[J]. 中国光学,2021,14(5):1146-1161. doi: 10.37188/CO.2021-0032

    SHI X G, XUE ZH H, LI H H, et al. Review of augmented reality display technology[J]. Chinese Optics, 2021, 14(5): 1146-1161. (in Chinese). doi: 10.37188/CO.2021-0032
    [2]
    DING Y Q, YANG Q, LI Y N Q, et al. Waveguide-based augmented reality displays: perspectives and challenges[J]. eLight, 2023, 3(1): 24. doi: 10.1186/s43593-023-00057-z
    [3]
    ROLLAND J P, GOODSELL J. Waveguide-based augmented reality displays: a highlight[J]. Light: Science & Applications, 2024, 13(1): 22.
    [4]
    LU Y Q, LI Y. Planar liquid crystal polarization optics for near-eye displays[J]. Light: Science & Applications, 2021, 10(1): 122.
    [5]
    SONG W T, LIANG X N, LI SH Q, et al. Retinal projection near‐eye displays with Huygens’ metasurfaces[J]. Advanced Optical Materials, 2023, 11(5): 2202348. doi: 10.1002/adom.202202348
    [6]
    PARK J H, LEE B. Holographic techniques for augmented reality and virtual reality near-eye displays[J]. Light: Advanced Manufacturing, 2022, 3(1): 137-150.
    [7]
    CHENG D W, DUAN J X, CHEN H L, et al. Freeform OST-HMD system with large exit pupil diameter and vision correction capability[J]. Photonics Research, 2022, 10(1): 21-32. doi: 10.1364/PRJ.440018
    [8]
    CHENG D W, WANG Q W, LIU Y, et al. Design and manufacture AR head-mounted displays: a review and outlook[J]. Light: Advanced Manufacturing, 2021, 2(3): 350-369.
    [9]
    JANG C W, BANG K, CHAE M, et al. Waveguide holography for 3D augmented reality glasses[J]. Nature Communications, 2024, 15(1): 66. doi: 10.1038/s41467-023-44032-1
    [10]
    DING Y Q, LI Y N Q, YANG Q, et al. Design optimization of polarization volume gratings for full-color waveguide-based augmented reality displays[J]. Journal of the Society for Information Display, 2023, 31(5): 380-386. doi: 10.1002/jsid.1206
    [11]
    XIONG J H, WU S T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications[J]. eLight, 2021, 1: 3. doi: 10.1186/s43593-021-00003-x
    [12]
    LI ZH, LUO X H, WANG J, et al. Phase space framework enables a variable-scale diffraction model for coherent imaging and display[J]. Photonics Research, 2024, 12(9): 1937. doi: 10.1364/PRJ.523568
    [13]
    WENG X Y, SONG Q, LI X M, et al. Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen[J]. Nature Communications, 2018, 9(1): 5035. doi: 10.1038/s41467-018-07282-y
    [14]
    CHENG H H, CHEN Y, CHRISTOPHE A, et al. Optimization and tolerance for an exit pupil expander with 2D grating as out-coupler[C]. Proceedings of SPIE 12449, Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) IV, SPIE, 2023: 124490X.
    [15]
    YAN SH F, ZHANG E Q, GUO J D, et al. Eyebox uniformity optimization over the full field of view for optical waveguide displays based on linked list processing[J]. Optics Express, 2022, 30(21): 38139-38151. doi: 10.1364/OE.472089
    [16]
    NI D W, CHENG D W, LIU Y, et al. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization[J]. Optics Express, 2022, 30(14): 24523-24543. doi: 10.1364/OE.462384
    [17]
    LI Z Y, GAO CH, LI H F, et al. Angular uniformity improvement of diffractive waveguide display based on region geometry optimization[J]. Applied Optics, 2024, 63(10): 2494-2502. doi: 10.1364/AO.515428
    [18]
    LEVOLA T. Diffractive optics for virtual reality displays[J]. Journal of the Society for Information Display, 2006, 14(5): 467-475. doi: 10.1889/1.2206112
    [19]
    KONG D Q, ZHAO ZH, SHI X G, et al. Optimization of gratings in a diffractive waveguide using relative-direction-cosine diagrams[J]. Optics Express, 2021, 29(22): 36720-36733. doi: 10.1364/OE.433515
    [20]
    李俊昌. 衍射计算及数字全息[M]. 北京: 科学出版社, 2014.

    LI J CH. Diffration Calculation and Digital Holography[M]. Beijing: Science Press, 2014. (in Chinese)
    [21]
    GOODMAN J W. Introduction to Fourier Optics[M]. 3rd ed. Englewood: Roberts and Company Publishers, 2005.
    [22]
    MOHARAM M G, GAYLORD T K, GRANN E B, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America A, 1995, 12(5): 1068-1076. doi: 10.1364/JOSAA.12.001068
    [23]
    MOHARAM M G, POMMET D A, GRANN E B, et al. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach[J]. Journal of the Optical Society of America A, 1995, 12(5): 1077-1086. doi: 10.1364/JOSAA.12.001077
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(8)

    Article views(222) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return