Turn off MathJax
Article Contents
QIAN Fang, XU Yong-bo. A spectrum signal pre-processing algorithm based on multi-scale wavelet transform[J]. Chinese Optics. doi: 10.37188/CO.2024-0230
Citation: QIAN Fang, XU Yong-bo. A spectrum signal pre-processing algorithm based on multi-scale wavelet transform[J]. Chinese Optics. doi: 10.37188/CO.2024-0230

A spectrum signal pre-processing algorithm based on multi-scale wavelet transform

cstr: 32171.14.CO.2024-0230
Funds:  Supported by Natural Science Foundation of Jilin Province
More Information
  • Corresponding author: qfmail@sina.cn
  • Received Date: 26 Dec 2024
  • Accepted Date: 28 Mar 2025
  • Available Online: 19 Apr 2025
  • Spectral techniques can be used to extract useful characteristic information from a large number of raw signals, used to analyze and identity the material components of the observed samples directly. It has high application value in biomedicine, food safety and military reconnaissance. Based on the purpose and effect of the pretreatment, many spectral preprocessing methods have appeared.This paper proposes a spectrum signal pre-processing algorithm based on multi-scale wavelet transform. Both simulated and experimental data are used to evaluate the performance of the algorithm. The signal-to-noise ratio of the simulated signal is 0.5 dB, after being processed by the algorithm in this article, the signal-to-noise ratio can reach to 8.978 dB. Five different types of baselines were added to the simulation, including linear, Gaussian, polynomial, exponential, and Sigmoidal. The algorithm proposed in this paper was used to correct baseline. The root mean square errors (RMSE) of the simulated baseline was 0.3759, 0.2883, 0.6631, 0.3489, 0.4520 respectively. The spectrum of Polytetrafluoroethylene was measured using a confocal micro Raman spectrometer and preprocessed using the algorithm proposed in this paper.The results demonstrate that the algorithm is capable of fast and accurate processing of the spectra.The algorithm could be used to reduce noise and correct baseline.This study put on a set of new ideas on spectrum signal processing.

     

  • loading
  • [1]
    孙嘉豪, 张伟, 施鉴芩, 等. 光谱数据预处理策略选择及应用[J]. 计量学报,2023,44(8):1284-1292. doi: 10.3969/j.issn.1000-1158.2023.08.20

    SUN J H, ZHANG W, SHI J Q, et al. Selection and application of spectral data preprocessing strategy[J]. Acta Metrologica Sinica, 2023, 44(8): 1284-1292. (in Chinese). doi: 10.3969/j.issn.1000-1158.2023.08.20
    [2]
    周粲入, 王哲涛, 杨思危, 等. 化学计量学和深度学习方法在拉曼光谱处理方面的应用研究进展[J]. 分析化学,2023,51(8):1232-1242.

    ZHOU C R, WANG ZH T, YANG S W, et al. Application progress of chemometrics and deep learning methods in Raman spectroscopy signal processing[J]. Chinese Journal of Analytical Chemistry, 2023, 51(8): 1232-1242. (in Chinese).
    [3]
    张雪容, 梁维新, 杨玉敏, 等. 顶空固相萃取-纸基表面增强拉曼光谱法快速测定水中痕量汞[J]. 分析化学,2023,51(9):1536-1544.

    ZHANG X R, LIANG W X, YANG Y M, et al. Determination of trace mercury in water by headspace solid phase extraction combining paper-based surface enhanced Raman spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2023, 51(9): 1536-1544. (in Chinese).
    [4]
    刘成员, 于江玉, 李奉翠, 等. 拉曼光谱测试技术在可充电铝离子电池储能机理的研究进展[J]. 应用化学,2023,40(10):1347-1358.

    LIU CH Y, YU J Y, LI F C, et al. Research progress of Raman spectroscopy technique in energy storage mechanism of rechargeable aluminum-ion batteries[J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1347-1358. (in Chinese).
    [5]
    李艳坤, 董汝南, 张进, 等. 光谱数据解析中的变量筛选方法[J]. 光谱学与光谱分析,2021,41(11):3331-3338.

    LI Y K, DONG R N, ZHANG J, et al. Variable selection methods in spectral data analysis[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3331-3338. (in Chinese).
    [6]
    ESTEVES C S M, DE REDROJO E M M, MANJÓN J L G, et al. Combining FTIR-ATR and OPLS-DA methods for magic mushrooms discrimination[J]. Forensic Chemistry, 2022, 29: 100421. doi: 10.1016/j.forc.2022.100421
    [7]
    CAMPOS M P, REIS M S. Data preprocessing for multiblock modelling-a systematization with new methods[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 199: 103959. doi: 10.1016/j.chemolab.2020.103959
    [8]
    YANG W Y, XIONG Y R, XU ZH ZH, et al. Piecewise preprocessing of near-infrared spectra for improving prediction ability of a PLS model[J]. Infrared Physics & Technology, 2022, 126: 104359.
    [9]
    SCHULZE H G, FOIST R B, IVANOV A, et al. Fully automated high-performance signal-to-noise ratio enhancement based on an iterative three-point zero-order Savitzky–Golay filter[J]. Applied Spectroscopy, 2008, 62(10): 1160-1166. doi: 10.1366/000370208786049079
    [10]
    DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627. doi: 10.1109/18.382009
    [11]
    ZHAO R ZH, LIU X Y, LI C C, et al. Wavelet denoising via sparse representation[J]. Science in China Series F: Information Sciences, 2009, 52(8): 1371-1377. doi: 10.1007/s11432-009-0116-7
    [12]
    刘帅奇, 胡绍海, 肖扬. 基于小波-Contourlet变换与Cycle Spinning相结合的SAR图像去噪[J]. 信号处理,2011,27(6):837-842. doi: 10.3969/j.issn.1003-0530.2011.06.006

    LIU SH Q, HU SH H, XIAO Y. SAR image de-noised based on wavelet-Contourlet transform with Cycle Spinning[J]. Signal Processing, 2011, 27(6): 837-842. (in Chinese). doi: 10.3969/j.issn.1003-0530.2011.06.006
    [13]
    PHILLIPS G R, HARRIS J M. Polynomial filters for data sets with outlying or missing observations: application to charge-coupled-device-detected Raman spectra contaminated by cosmic rays[J]. Analytical Chemistry, 1990, 62(21): 2351-2357. doi: 10.1021/ac00220a017
    [14]
    LIU H C, SHAH S, Jiang W. On-line outlier detection and data cleaning[J]. Computers & Chemical Engineering, 2004, 28(9): 1635-1647.
    [15]
    GAN F, RUAN G H, MO J Y. Baseline correction by improved iterative polynomial fitting with automatic threshold[J]. Chemometrics and Intelligent Laboratory Systems, 2006, 82(1-2): 59-65. doi: 10.1016/j.chemolab.2005.08.009
    [16]
    SCHULZE H G, FOIST R B, OKUDA K, et al. A small-window moving average-based fully automated baseline estimation method for Raman spectra[J]. Applied Spectroscopy, 2012, 66(7): 757-764. doi: 10.1366/11-06550
    [17]
    ZHANG ZH M, CHEN SH, LIANG Y Z. Baseline correction using adaptive iteratively reweighted penalized least squares[J]. Analyst, 2010, 135(5): 1138-1146. doi: 10.1039/b922045c
    [18]
    ALI F, KABIR M, ARIF M. DBPPred-PDSD: Machine learning approach for prediction of DNA-binding proteins using discrete wavelet transform and optimized integrated features space[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 182: 21-30. doi: 10.1016/j.chemolab.2018.08.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article views(149) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return