Turn off MathJax
Article Contents
LEI Jun-ge, SUN Guo-bin, ZHANG Jin, JIANG Shi-lei, HU Chi. Design of holographic reproduction images based on liquid crystal spatial light modulator[J]. Chinese Optics. doi: 10.37188/CO.2024-0224
Citation: LEI Jun-ge, SUN Guo-bin, ZHANG Jin, JIANG Shi-lei, HU Chi. Design of holographic reproduction images based on liquid crystal spatial light modulator[J]. Chinese Optics. doi: 10.37188/CO.2024-0224

Design of holographic reproduction images based on liquid crystal spatial light modulator

cstr: 32171.14.CO.2024-0224
Funds:  Supported by Natural Science Foundation of Shaanxi Science and Technology Department (No. 2024JC-YBMS-269)
More Information
  • Corresponding author: 83680337@qq.com
  • Received Date: 11 Dec 2024
  • Accepted Date: 18 Mar 2025
  • Available Online: 28 Mar 2025
  • With the wide application of holographic head-up display system and virtual reality augmented display technology, holographic reproduced images are required to be virtual images with higher quality, more realistic reproduction image size and more in line with human visual characteristics. Based on the principle of computer-generated holograms reproduction imaging, this paper used the Gerchberg-Saxton (GS) algorithm to iteratively solve the phase distribution of the original simulation images under different characteristic parameters (line width, ring diameter) and different calculated sampling intervals by performing direct and inverse Fourier transforms on the optical field distributions of the input and output planes, and the corresponding reproduced images were obtained by simulation calculation. The optical path of the holographic reproduction experiment was constructed by using the liquid crystal spatial light modulator, and the reproduction experiment was carried out by loading the phase distribution maps of different original simulation images, the holographic reproduction images of far-field diffraction were taken by the camera, and the actual feature size of the reproduced images was obtained by image processing. The experimental results show that the feature size of the reproduced images is basically linear with the characteristic size of the original simulation images. Furthermore, the reproduction image size shows a non-linear change relationship with the sampling intervals of the simulation calculation, which is consistent with the derived theoretical calculation relationship curve. In order to further verify the correctness of the conclusion, when the size of the expected reproduced image is designed as the ring diameter of 0.943mm and the line width of the central cross of 0.015mm. The characteristic size and sampling interval of the original simulation image of the expected target are obtained by the simulation calculation as the line width of 3pixel, the ring diameter of 594pixel and the sampling interval of 25μm, respectively. The ring diameter and line width of the holographic reproduction image, as measured by the reproduction experiment, are 0.93mm and 0.017mm, respectively. The error accuracy is within 0.02mm. The findings of this study provide an effective reference for application scenarios such as holographic display and AR/VR display to improve the authenticity of virtual display image size.

     

  • loading
  • [1]
    GABOR D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777-778. doi: 10.1038/161777a0
    [2]
    GOODMAN J W, LAWRENCE R W. Digital image formation from electronically detected holograms[J]. Applied Physics Letters, 1967, 11(3): 77-79. doi: 10.1063/1.1755043
    [3]
    LOHMANN A W, PARIS D P. Binary fraunhofer holograms, generated by computer[J]. Applied Optic, 1967, 6(10): 1739-1748. doi: 10.1364/AO.6.001739
    [4]
    GERCHBERG R W, SAXTON W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2): 237-246.
    [5]
    王晓诗. 基于迭代的高质量纯相位全息图生成算法[D]. 昆明: 昆明理工大学, 2023.

    WANG X SH. The algorithm based on iteration for generation of phase-only hologram with high quality[D]. Kunming: Kunming University of Science & Technology, 2023. (in Chinese).
    [6]
    高乾程. 基于相位优化的计算全息显示研究[D]. 芜湖: 安徽工程大学, 2023.

    GAO Q CH. Research on computer-generated holographic display based on phase optimizatio[D]. Wuhu: Anhui Polytechnic University, 2023. (in Chinese).
    [7]
    刘珂瑄, 吴佳琛, 何泽浩, 等. 基于深度学习的计算全息显示进展[J]. 液晶与显示,2023,38(6):819-828. doi: 10.37188/CJLCD.2023-0081

    LIU K X, WU J CH, HE Z H, et al. Progress of learning-based computer-generated holography[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(6): 819-828. (in Chinese). doi: 10.37188/CJLCD.2023-0081
    [8]
    唐旭. 关于计算全息显示中散斑降噪方法研究[D]. 南昌: 南昌航空大学, 2023.

    TANG X. Research on speckle noise reduction method in computational holographic display[D]. Nanchang: Nanchang Hangkong University, 2023. (in Chinese).
    [9]
    邬明仁. 基于扩散模型的计算全息方法研究[D]. 南昌: 南昌大学, 2024.

    WU M R. Research on computer-generated holography method based on diffusion model[D]. Nanchang: Nanchang University, 2024. (in Chinese).
    [10]
    高云舒. 基于液晶空间光调制器的可编程波长选择开关的技术研究[D]. 北京: 北京交通大学, 2020.

    GAO Y SH. Research on programmable wavelength selective switch based on liquid crystal spatial light modulator[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese).
    [11]
    KOLLIN J S, BENTON S A, JEPSEN M L. Real-time display of 3-D computed holograms by scanning the image of an acousto-optic modulator[J]. Proceedings of SPIE, 1989, 1136: 178-185. doi: 10.1117/12.961683
    [12]
    SANDO Y, BARADA D, YATAGAI T. Full-color holographic 3D display with horizontal full viewing zone by spatiotemporal-division multiplexing[J]. Applied Optics, 2018, 57(26): 7622-7626. doi: 10.1364/AO.57.007622
    [13]
    BUSKE P, HOFMANN O, BONNHOFF A, et al. High fidelity laser beam shaping using liquid crystal on silicon spatial light modulators as diffractive neural networks[J]. Optics express, 2024, 32(5): 7064-7078. doi: 10.1364/OE.507630
    [14]
    MINIKHANOV T Z, ZLOKAZOV E Y, STARIKOV R S, et al. Phase modulation time dynamics of the liquid-crystal spatial light modulator[J]. Measurement Techniques, 2024, 66(12): 935-939. doi: 10.1007/s11018-024-02309-x
    [15]
    MA B H, YAO B L, LI Z, et al. Generation of three-dimensional optical structures by dynamic holograms displayed on a twisted nematic liquid crystal display[J]. Applied Physics B, 2013, 110(4): 531-537. doi: 10.1007/s00340-012-5289-x
    [16]
    ZHU W X, GAO F L, FU Q Q, et al. Multi-mode vector light field generation using modified off-axis interferometric holography and liquid crystal spatial light modulators[J]. Photonics, 2023, 11(1): 33. doi: 10.3390/photonics11010033
    [17]
    肖瑞. 基于全息光学元件的增强现实三维显示[D]. 北京: 北京邮电大学, 2023.

    XIAO R. Augmented reality 3D display based on holographic optical element[D]. Beijing: Beijing University of Posts and Telecommunications, 2023. (in Chinese).
    [18]
    XU K, LI X R. Light field modulation algorithms for spatial light modulators: a review[J]. Current Nanoscience, 2024, 21(2): 182-200. doi: 10.2174/0115734137276125231201113602
    [19]
    马宁涛. 计算全息再现像质量提升技术的研究[D]. 郑州: 郑州轻工业大学, 2023.

    MA N T. Research on quality improvement technology of computer-generated holographic image[D]. Zhengzhou: Zhengzhou University of Light Industry, 2023. (in Chinese).
    [20]
    王化宾, 何渝, 赵立新. 基于改进Gerchberg-Saxton算法的全息双面光刻方法[J]. 激光与光电子学进展,2023,60(16):1609001.

    WANG H B, HE Y, ZHAO L X. Holographic double-sided photolithography based on improved gerchberg-saxton algorithm[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1609001. (in Chinese).
    [21]
    CHEN Q, TANG M Y, SUN CH L, et al. 83-3: inverse design of liquid crystal phase modulators for 2D/3D switchable display based on deep learning[J]. SID Symposium Digest of Technical Papers, 2024, 55(1): 1159-1162. doi: 10.1002/sdtp.17745
    [22]
    武耀霞. 相位型全息分划板的复制技术研究[D]. 西安: 西安工业大学, 2019.

    WU Y X. Research on replication technology of phase holographic reticle[D]. Xi’an: Xi’an Technological University, 2019. (in Chinese).
    [23]
    林培秋. 基于纯相位型液晶空间光调制器的相息图三维显示的研究[D]. 金华: 浙江师范大学, 2010.

    LIN P Q. Study on three-dimensional display from kinoform based phase-only liquid crystal spatial light modulator[D]. Jinhua: Zhejiang Normal University, 2010. (in Chinese).
    [24]
    颜树华. 衍射微光学设计[M]. 北京: 国防工业出版社, 2011.

    YAN SH H. Design of Diffractive Micro-optics[M]. Beijing: National Defense Industry Press, 2011. (in Chinese).
    [25]
    吴嘉元, 韩军, 王谦豪, 等. 利用达曼光栅灰度图去除零级光干扰[J]. 激光与光电子学进展,2024,61(4):185-192.

    WU J Y, HAN J, WANG Q H, et al. Removal of zero-order beam interference using Dammann grating grayscale map[J]. Laser & Optoelectronics Progress, 2024, 61(4): 185-192. (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(8)

    Article views(49) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return