Turn off MathJax
Article Contents
GAO Hong-hu, MA Jun-jie, ZHU Lin-wei, SHI Qiang. Laser compensation of optical waveguide shape defects on vertical end face[J]. Chinese Optics. doi: 10.37188/CO.2024-0220
Citation: GAO Hong-hu, MA Jun-jie, ZHU Lin-wei, SHI Qiang. Laser compensation of optical waveguide shape defects on vertical end face[J]. Chinese Optics. doi: 10.37188/CO.2024-0220

Laser compensation of optical waveguide shape defects on vertical end face

cstr: 32171.14.CO.2024-0220
Funds:  Supported by National Natural Science Foundation of China (No. 62174073); Yantai Science and Technology Development Plan (No. 2020XDRH095); Shandong Province Taishan Industry Leading Talent Project (No. tscx202211051)
More Information
  • To address the issue of shape defects in optical waveguides that occur due to the laser beam being obstructed by the surface of the photonic chip during the vertical end-face waveguide bridging process in photonic chips. Based on the focusing light field of high numerical aperture (NA) objective lenses, the characteristics of light intensity distribution at various x-direction offset distances of the laser focus from the vertical end-face of the photonic chip are investigated. First, we give the analytical expressions of the light field near the focus. These are in the focusing system of high NA lenses. Firstly, analytical expressions for the light field distribution near the focal point in the focusing system of a high numerical aperture (NA) objective lens are presented, along with expressions for the components of the focused light field when linearly polarized light is incident. Then, numerical simulations are conducted with the provided expressions, the focal light intensity distribution of the laser focus at different x-direction offset distances from the vertical end-face of the photonic chip is studied. The intensity variations of the focal light field when subjected to disturbances are revealed, and curves depicting the intensity changes of the focal light field are plotted. These curves align with the observed trends in the shape changes of the optical waveguide during experiments. Finally, based on the focal light intensity distribution curves, the laser power compensation coefficients curves are derived in reverse. These are then applied to the optical waveguide compensation processing experiments. It can be seen that after power compensation processing, the sections of the optical waveguide with a width less than 4 μm are successfully compensated to 4 μm. Moreover, the morphology became straighter, and the defects are effectively repaired. The results of numerical calculation simulations and experiments demonstrate that this method successfully compensates for the shape defects of optical waveguides caused by insufficient laser power, providing an effective solution for the fabrication and processing of optical waveguides in the field of photonic chip integrated coupling.

     

  • loading
  • [1]
    冯萧萧, 韩明宇, 陈美鹏, 等. 运动探测及可见光通信一体化氮化物光电子芯片[J]. 中国光学(中英文),2023,16(5):1257-1272. doi: 10.37188/CO.2023-0028

    FENG X X, HAN M Y, CHEN M P, et al. Integrated Nitride optoelectronic chip for motion detection and visible light communication[J]. Chinese Optics, 2023, 16(5): 1257-1272. (in Chinese). doi: 10.37188/CO.2023-0028
    [2]
    JIMENEZ GORDILLO O A, NOVICK A, WANG O L, et al. Fiber-chip link via mode division multiplexing[J]. IEEE Photonics Technology Letters, 2023, 35(19): 1071-1074. doi: 10.1109/LPT.2023.3298771
    [3]
    LUO W, CAO L, SHI Y ZH, et al. Recent progress in quantum photonic chips for quantum communication and internet[J]. Light: Science & Applications, 2023, 12(1): 175.
    [4]
    LI S M, CUI ZH Z, YE X W, et al. Chip-based microwave-photonic radar for high-resolution imaging[J]. Laser & Photonics Reviews, 2020, 14(10): 1900239.
    [5]
    NEVLACSIL S, MUELLNER P, MAESE-NOVO A, et al. Multi-channel swept source optical coherence tomography concept based on photonic integrated circuits[J]. Optics Express, 2020, 28(22): 32468-32482. doi: 10.1364/OE.404588
    [6]
    SUN B SH, MOSER S, JESACHER A, et al. Fast, precise, high contrast laser writing for photonic chips with phase aberrations[J]. Laser & Photonics Reviews, 2024, 18(9): 2300702.
    [7]
    WANG J, CAI CH K, CUI F, et al. Tailoring light on three-dimensional photonic chips: a platform for versatile OAM mode optical interconnects[J]. Advanced Photonics, 2023, 5(3): 036004.
    [8]
    MA Y X, ZHAO J, YANG T T, et al. Hybrid-integrated 200 Gb/s REC-DML array transmitter based on photonic wire bonding technology[J]. Chinese Optics Letters, 2024, 22(8): 081401. doi: 10.3788/COL202422.081401
    [9]
    HAN X Y, CHAO M, SU X X, et al. Multiband signal receiver by using an optical bandpass filter integrated with a photodetector on a chip[J]. Micromachines, 2023, 14(2): 331. doi: 10.3390/mi14020331
    [10]
    ZHANG W F, WANG B. On-chip reconfigurable microwave photonic processor[J]. Chinese Journal of Electronics, 2023, 32(2): 334-342. doi: 10.23919/cje.2020.00.273
    [11]
    杜悦宁, 陈超, 秦莉, 等. 硅光子芯片外腔窄线宽半导体激光器[J]. 中国光学,2019,12(2):229-241. doi: 10.3788/co.20191202.0229

    DU Y N, CHEN CH, QIN L, et al. Narrow linewidth external cavity semiconductor laser based on silicon photonic chip[J]. Chinese Optics, 2019, 12(2): 229-241. (in Chinese). doi: 10.3788/co.20191202.0229
    [12]
    LUAN E X, YU SH X, SALMANI M, et al. Towards a high-density photonic tensor core enabled by intensity-modulated microrings and photonic wire bonding[J]. Scientific Reports, 2023, 13(1): 1260. doi: 10.1038/s41598-023-27724-y
    [13]
    WAN C SH, GONZALEZ J L, FAN T R, et al. Fiber-interconnect silicon chiplet technology for self-aligned fiber-to-chip assembly[J]. IEEE Photonics Technology Letters, 2019, 31(16): 1311-1314. doi: 10.1109/LPT.2019.2923206
    [14]
    LINDENMANN N, BALTHASAR G, HILLERKUSS D, et al. Photonic wire bonding: a novel concept for chip-scale interconnects[J]. Optics Express, 2012, 20(16): 17667-17677. doi: 10.1364/OE.20.017667
    [15]
    LINDENMANN N, DOTTERMUSCH S, GOEDECKE M L, et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding[J]. Journal of Lightwave Technology, 2015, 33(4): 755-760. doi: 10.1109/JLT.2014.2373051
    [16]
    ZVAGELSKY R D, CHUBICH D A, KOLYMAGIN D A, et al. Three-dimensional polymer wire bonds on a chip: morphology and functionality[J]. Journal of Physics D: Applied Physics, 2020, 53(35): 355102. doi: 10.1088/1361-6463/ab8e7f
    [17]
    GEHRING H, BLAICHER M, HARTMANN W, et al. Low-loss fiber-to-chip couplers with ultrawide optical bandwidth[J]. APL Photonics, 2019, 4(1): 010801. doi: 10.1063/1.5064401
    [18]
    CHOWDHURY S J, WICKREMASINGHE K, GRIST S M, et al. On-chip hybrid integration of swept frequency distributed-feedback laser with silicon photonic circuits using photonic wire bonding[J]. Optics Express, 2024, 32(3): 3085-3099. doi: 10.1364/OE.510036
    [19]
    KOOS C, FREUDE W, LINDENMANN N, et al. Three-dimensional two-photon lithography: an enabling technology for photonic wire bonding and multi-chip integration[J]. Proceedings of SPIE, 2014, 8970: 897008.
    [20]
    DE GREGORIO M, YU SH X, WITT D, et al. Plug-and-play fiber-coupled quantum dot single-photon source via photonic wire bonding[J]. Advanced Quantum Technologies, 2024, 7(1): 2300227. doi: 10.1002/qute.202300227
    [21]
    WOLF E. Electromagnetic diffraction in optical systems I. An integral representation of the image field[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1959, 253(1274): 349-357.
    [22]
    RICHARDS B, WOLF E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1959, 253(1274): 358-379.
    [23]
    ZHU L W, SUN M Y, ZHANG D W, et al. Multifocal array with controllable polarization in each focal spot[J]. Optics Express, 2015, 23(19): 24688-24698. doi: 10.1364/OE.23.024688
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views(196) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return