Turn off MathJax
Article Contents
FANG Xiang-ming, ZHANG Rong-ke, SUN Yu, WU Wei-yu, ZHU Jian-hua, YOU Xiu-fen, GAO Shi-yong. Bi2O3/Bi2S3 heterojunction composite preparation and photodetection performance[J]. Chinese Optics. doi: 10.37188/CO.2024-0218
Citation: FANG Xiang-ming, ZHANG Rong-ke, SUN Yu, WU Wei-yu, ZHU Jian-hua, YOU Xiu-fen, GAO Shi-yong. Bi2O3/Bi2S3 heterojunction composite preparation and photodetection performance[J]. Chinese Optics. doi: 10.37188/CO.2024-0218

Bi2O3/Bi2S3 heterojunction composite preparation and photodetection performance

cstr: 32171.14.CO.2024-0218
Funds:  Supported by Fundamental Research Funds for the Central Universities (No. HIT. DZJJ. 2023002), Research Program of Taiyuan University (No. 23TYYB09), Science and Technology Innovation Project of Shanxi Province Colleges and Universities (No. 2022L590)
More Information
  • The Bi2O3/Bi2S3 heterojunction composite was prepared by thermal polymerization combined with room temperature solution method, and its micromorphology, crystal structure and elemental composition were characterized. The results demonstrate that the Bi2O3/Bi2S3 heterojunction composite exhibits a bulk morphology, accompanied by the presence of pores and a relatively rough surface. Based on the Bi2O3/Bi2S3 heterojunction composite, the photodetector was fabricated and its photodetection performance was measured under zero bias voltage. When exposed to ultraviolet (UV) light, the maximum photocurrent (0.32 μA) and response speed (65.65/80.56 ms) of the Bi2O3/Bi2S3 photodetector are significantly enhanced compared to those of the Bi2O3 photodetector. In addition, the device exhibits a wide photodetection band from the ultraviolet (UV) to the visible (Vis) spectrum, as well as fast and stable self-driven photodetection capability. This is mainly attributed the successful coupling of Bi2O3 and Bi2S3 with a narrow band gap, resulting in the formation of a heterojunction composite that exhibits a type II band structure. It is noteworthy that the photodetection performance of the device was measured by continuously alternating between blue light on and off for 100 times. This indicates that the Bi2O3/Bi2S3 photodetector exhibits excellent cycle stability.

     

  • loading
  • [1]
    裴梓伊, 胡朋兵, 潘孙强, 等. TDLAS气体激光遥测高灵敏光电探测电路设计[J]. 中国光学(中英文),2024,17(1):198-208. doi: 10.37188/CO.2023-0107

    PEI Z Y, HU P B, PAN S Q, et al. Design of a highly sensitive photoelectric detection circuit for TDLAS gas laser telemetry[J]. Chinese Optics, 2024, 17(1): 198-208. (in Chinese). doi: 10.37188/CO.2023-0107
    [2]
    李力, 耿会娟, 张天昊, 等. 基于PbS量子点光电探测器的脉搏检测系统研究[J]. 中国光学(中英文),2024,17(5):1236-1243. doi: 10.37188/CO.2024-0018

    LI L, GENG H J, ZHANG T H, et al. Research on pulse detection system based on PbS quantum dot photodetector[J]. Chinese Optics, 2024, 17(5): 1236-1243. (in Chinese). doi: 10.37188/CO.2024-0018
    [3]
    ZHENG Q, XU J P, LI J, et al. Regulation of Bi2O3 phase structure improves the self-powered UV-blue dual-band photoresponse of Bi2O3/TiO2 photodetectors and the imaging application[J]. Surfaces and Interfaces, 2024, 44: 103758. doi: 10.1016/j.surfin.2023.103758
    [4]
    LIU L, YANG CH, PATANÈ A, et al. High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN[J]. Nanoscale, 2017, 9(24): 8142-8148. doi: 10.1039/C7NR01290J
    [5]
    田慧军, 刘巧莉, 岳恒, 等. 高比探测率和高速石墨烯/n-GaAs复合结构的光电探测器[J]. 中国光学,2021,14(1):206-212. doi: 10.37188/CO.2020-0153

    TIAN H J, LIU Q L, YUE H, et al. Hybrid graphene/n-GaAs photodiodes with high specific detectivity and high speed[J]. Chinese Optics, 2021, 14(1): 206-212. (in Chinese). doi: 10.37188/CO.2020-0153
    [6]
    段雨晗, 蒋大勇, 赵曼. 高增益ZnO肖特基紫外光电探测器光响应特性[J]. 发光学报,2023,44(10):1816-1823. doi: 10.37188/CJL.20230169

    DUAN Y H, JIANG D Y, ZHAO M. Responsivity characteristics of ZnO schottky ultraviolet photodetectors with high gain[J]. Chinese Journal of Luminescence, 2023, 44(10): 1816-1823. (in Chinese). doi: 10.37188/CJL.20230169
    [7]
    LI R J, TANG L B, ZHAO Q, et al. Facile synthesis of ZnS quantum dots at room temperature for ultra-violet photodetector applications[J]. Chemical Physics Letters, 2020, 742: 137127. doi: 10.1016/j.cplett.2020.137127
    [8]
    VILA M, DÍAZ-GUERRA C, PIQUERAS J. α-Bi2O3 microcrystals and microrods: thermal synthesis, structural and luminescence properties[J]. Journal of Alloys and Compounds, 2013, 548: 188-193. doi: 10.1016/j.jallcom.2012.08.133
    [9]
    PARK Y W, JUNG H J, YOON S G. Bi2O3 nanowire growth from high-density Bi nanowires grown at a low temperature using aluminum-bismuth co-deposited films[J]. Sensors and Actuators B: Chemical, 2011, 156(2): 709-714. doi: 10.1016/j.snb.2011.02.023
    [10]
    WU J, WANG F K, LI H B, et al. Epitaxial growth of 2D ultrathin metastable γ-Bi2O3 flakes for high performance ultraviolet photodetection[J]. Small, 2022, 18(3): 2104244. doi: 10.1002/smll.202104244
    [11]
    ZHANG W W, GAO SH M, CHEN D H. Preparation of Ce3+ doped Bi2O3 hollow needle-shape with enhanced visible-light photocatalytic activity[J]. Journal of Rare Earths, 2019, 37(7): 726-731. doi: 10.1016/j.jre.2018.12.007
    [12]
    PRAKASH M, KAVITHA H P, ARULMURUGAN S, et al. Ag-doped Bi2O3 nanoparticles: synthesis, characterization, antibacterial, larvicidal, and photocatalytic properties[J]. Journal of Sol-Gel Science and Technology, 2024, 110(3): 807-818. doi: 10.1007/s10971-024-06400-1
    [13]
    REDDY N L, EMIN S, VALANT M, et al. Nanostructured Bi2O3@TiO2 photocatalyst for enhanced hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 42(10): 6627-6636. doi: 10.1016/j.ijhydene.2016.12.154
    [14]
    YI H X, MA CH R, WANG W, et al. Quantum tailoring for polarization-discriminating Bi2S3 nanowire photodetectors and their multiplexing optical communication and imaging applications[J]. Materials Horizons, 2023, 10(9): 3369-3381. doi: 10.1039/D3MH00733B
    [15]
    CHEN G H, YU Y Q, ZHENG K, et al. Fabrication of ultrathin Bi2S3 nanosheets for high-performance, flexible, visible-NIR photodetectors[J]. Small, 2015, 11(24): 2848-2855. doi: 10.1002/smll.201403508
    [16]
    WANG F X, YE C, MO S, et al. Enhanced photoelectrochemical sensing based on novel synthesized Bi2S3@Bi2O3 nanosheet heterostructure for ultrasensitive determination of L-cysteine[J]. Analytical and Bioanalytical Chemistry, 2019, 411(14): 3059-3068. doi: 10.1007/s00216-019-01765-7
    [17]
    CHANG F, PENG SH J, YAN W J, et al. A novel and facile procedure to decorate Bi2O3 with Bi2S3 nanocrystals: composites synthesis, analyses, and photocatalytic performance assessment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125640. doi: 10.1016/j.colsurfa.2020.125640
    [18]
    KIM J H, LIM T, PARK J Y, et al. Understanding and improving photoelectrochemical performance of Bi2O3/Bi2S3 composite[J]. New Journal of Chemistry, 2019, 43(30): 11893-11902. doi: 10.1039/C9NJ02913C
    [19]
    SONG J J, ZHU G SH, XU H R, et al. Preparation and properties of high-density Bi2O3 ceramics by cold sintering[J]. Ceramics International, 2020, 46(9): 13848-13853. doi: 10.1016/j.ceramint.2020.02.177
    [20]
    WANG J L, LI L J, YU H S, et al. Binary-ternary Bi2S3-AgBiS2 rod-to-rod transformation via anisotropic partial cation exchange reaction[J]. Inorganic Chemistry, 2019, 58(19): 12998-13006. doi: 10.1021/acs.inorgchem.9b01917
    [21]
    GUAN ZH P, LI Q Y, SHEN B, et al. Fabrication of Co3O4 and Au co-modified BiOBr flower-like microspheres with high photocatalytic efficiency for sulfadiazine degradation[J]. Separation and Purification Technology, 2020, 234: 116100. doi: 10.1016/j.seppur.2019.116100
    [22]
    YI H X, MA CH R, WANG W, et al. Quantum tailoring for polarization-discriminating Bi2S3 nanowire photodetectors and their multiplexing optical communication and imaging applications[J]. Materials Horizons, 2023, 10(9): 3369-3381. (查阅网上资料, 本条文献信息与第14条重复, 请确认) .
    [23]
    FAROOQ S, FEENEY T, MENDES J O, et al. High gain solution-processed carbon-free BiSI chalcohalide thin film photodetectors[J]. Advanced Functional Materials, 2021, 31(52): 2104788. doi: 10.1002/adfm.202104788
    [24]
    CHANG F, PENG SH J, YAN W J, et al. A novel and facile procedure to decorate Bi2O3 with Bi2S3 nanocrystals: composites synthesis, analyses, and photocatalytic performance assessment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125640. (查阅网上资料, 本条文献信息与第17条重复, 请确认) .
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(40) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return