Citation: | GAO Tian-yu, ZHANG Tian-yi, MENG Qing-yu, XIAN Jing-tian, LUO JING, WANG Wei. Reserch on the test method of solar stray light suppression ability of heliospheric imager[J]. Chinese Optics. doi: 10.37188/CO.2024-0216 |
In order to quantitatively assess the solar stray light suppression capability of the heliospheric imager, a testing approach and experimental validation of the solar stray light suppression capability of the heliospheric imager were investigated. In this paper, we propose a method to test the solar stray light suppression capability of the heliospheric imager under laboratory circumstances by conducting segmented tests of the front-end baffle and the camera. This approach circumvented the issue that the structural scattering caused by the test under vacuum conditions would be overly large and influence the accuracy of the test results. The proposed method was then employed to assess the effectiveness of a heliospheric imager in suppressing solar stray light under laboratory conditions. The experimental results indicated that the PST of the heliospheric imager was 1.4×10−8 at WACH1 and 4.3×10−9 at WACH2. The error analysis of the test results revealed that the random error was 21.6%, and the PST resulting from the sum of system errors was 1.1×10−8 at WACH1 and 4.2×10−9 at WACH2. The test accuracy met the requirements, demonstrating the feasibility and accuracy of the test method. The study presented in this paper offers a novel means to test the solar stray light suppression capability of heliospheric imager.
[1] |
DEFISE J M, HALAIN J P, MAZY E, et al. Design of the Heliospheric Imager for the STEREO mission[J]. Proceedings of SPIE, 2001, 4498: 63-72. doi: 10.1117/12.450079
|
[2] |
ZIMBARDO G, YING B, NISTICÒ G, et al. A high-latitude coronal mass ejection observed by a constellation of coronagraphs: solar orbiter/metis, STEREO-A/COR2, and SOHO/LASCO[J]. Astronomy & Astrophysics, 2023, 676: A48.
|
[3] |
BRAGA C R, VOURLIDAS A, LIEWER P C, et al. Coronal mass ejection deformation at 0.1 au observed by WISPR[J]. Astrophysical Journal, 2022, 938: 13. doi: 10.3847/1538-4357/ac90bf
|
[4] |
徐亮. 大口径光学系统杂散光测试关键技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2019.
XU L. Research on key techniques of stray light measurement for large aperture optical systems[D]. Xi’an: University of Chinese Academy of Sciences (Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences), 2019. (in Chinese).
|
[5] |
王虎, 陈钦芳, 马占鹏, 等. 杂散光抑制与评估技术发展与展望(特邀)[J]. 光子学报,2022,51(7):0751406. doi: 10.3788/gzxb20225107.0751406
WANG H, CHEN Q F, MA ZH P, et al. Development and prospect of stray light suppression and evaluation technology (invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751406. (in Chinese). doi: 10.3788/gzxb20225107.0751406
|
[6] |
GROCHOCKI F, FLEMING J. Stray light testing of the OLI telescope[J]. Proceedings of SPIE, 2010, 7794: 77940W. doi: 10.1117/12.862225
|
[7] |
FAN X W, ZOU G Y, QIU Y L, et al. Optical design of the visible telescope for the SVOM mission[J]. Applied Optics, 2020, 59(10): 3049-3057. doi: 10.1364/AO.386177
|
[8] |
EYLES C J, HARRISON R A, DAVIS C J, et al. The heliospheric imagers onboard the STEREO mission[J]. Solar Physics, 2009, 254(2): 387-445. doi: 10.1007/s11207-008-9299-0
|
[9] |
VOURLIDAS A, HOWARD R A, PLUNKETT S P, et al. The wide-field imager for solar probe plus (WISPR)[J]. Space Science Reviews, 2016, 204(1): 83-130.
|
[10] |
冷荣宽, 王上, 王智, 等. 空间引力波探测前向杂散光测量和抑制[J]. 中国光学(中英文),2023,16(5):1081-1088. doi: 10.37188/CO.2022-0251
LENG R K, WANG SH, WANG ZH, et al. Measurement and suppression of forward stray light for spaceborne gravitational wave detection[J]. Chinese Optics, 2023, 16(5): 1081-1088. (in Chinese). doi: 10.37188/CO.2022-0251
|
[11] |
THERNISIEN A F R, HOWARD R A, KORENDYKE C, et al. Stray light analysis and testing of the SoloHI (solar orbiter heliospheric imager) and WISPR (wide field imager for solar probe) heliospheric imagers[J]. Proceedings of SPIE, 2018, 10698: 106980E.
|
[12] |
ZHANG T Y, GAO T Y, WANG D, et al. Calculation of diffraction by a multi-vane baffle based on boundary wave diffraction theory[J]. Proceedings of SPIE, 2024, 13189: 1318911.
|
[13] |
王维, 陆琳, 张天一, 等. 10−9量级高灵敏度点源透射比测试设备研究[J]. 中国光学,2021,14(2):390-396. doi: 10.37188/CO.2020-0050
WANG W, LU L, ZHANG T Y, et al. A 10−9-order point source transmission test facility[J]. Chinese Optics, 2021, 14(2): 390-396. (in Chinese). doi: 10.37188/CO.2020-0050
|
[14] |
曹智睿, 付跃刚, 田浩. 空气洁净度对点源透射比测试准确度的影响[J]. 光子学报,2016,45(1):0112002. doi: 10.3788/gzxb20164501.0112002
CAO ZH R, FU Y G, TIAN H. The impact for the air cleanliness to the precision of PST test[J]. Acta Photonica Sinica, 2016, 45(1): 0112002. (in Chinese). doi: 10.3788/gzxb20164501.0112002
|
[15] |
曾瑾, 王战虎, 李欣耀, 等. 基于双柱罐结构的三波段杂散光PST测试装置[J]. 红外,2017,38(4):12-16,22. doi: 10.3969/j.issn.1672-8785.2017.04.003
ZENG J, WANG ZH H, LI X Y, et al. Three-band stray-light test facility for point source transmission based on double cylindrical chamber[J]. Infrared, 2017, 38(4): 12-16,22. (in Chinese). doi: 10.3969/j.issn.1672-8785.2017.04.003
|
[16] |
肖鹏益, 刘铭鑫, 闫磊, 等. 鬼像影响下的调制传递函数计算模型[J]. 中国光学(中英文),2024,17(5):1183-1191.
XIAO P Y, LIU M X, YAN L, et al. An MTF calculation model under the influence of ghost images[J]. Chinese Optics, 2024, 17(5): 1183-1191. (in Chinese).
|
[17] |
KEMP J C, WYATT C L. Terrestrial measurement of the performance of high-rejection optical baffling systems[J]. Optical Engineering, 1977, 16: 412-416.
|