Citation: | WEI Peng-fei, DU Hu-bing, ZHU Qian, LIU Chang, LI Yan-jie. Single-frame color stripe contour technique based on fast iterative filtering[J]. Chinese Optics. doi: 10.37188/CO.2024-0213 |
In order to achieve real-time 3D measurement of dynamic objects and to overcome the measurement accuracy limitations caused by spectral aliasing of different carrier frequencies in traditional Fourier demodulation methods, as well as the color coupling problem in color composite stripe projection techniques, this paper proposes a three-frequency color stripe projection profilometry method based on fast iterative filtering. The method first captures a color image using a CCD camera, where the red, green, and blue channels carry gray stripe images with different carrier frequencies. Background interference is then reduced by component subtraction, followed by carrier frequency separation and color decoupling using fast iterative filtering. The subsequent application of the Fourier transform is applied to the carrier-frequency stripe images in the red, green, and blue channels enables the extraction of wrapped phase information. To achieve accurate phase unwrapping, a spatial domain unwrapping algorithm is employed. The low-frequency phase is first unwrapped, followed by the middle and high-frequency phases, which are unwrapped sequentially to complete the entire phase unwrapping process. The simulation and experimental results demonstrates that the proposed method exhibits a phase unwrapping accuracy that is 7 times higher than that of traditional Fourier methods. In comparison with other single-frame demodulation methods, the proposed method demonstrates superior accuracy and robust noise resistance, thus providing an effective technical solution for high-precision, dynamic real-time 3D measurement.
[1] |
李天宇, 刘昌文, 段发阶, 等. 线结构光三维形貌测量系统精度影响因素分析[J]. 光学学报,2024,44(21):2112001. doi: 10.3788/AOS241065
LI T Y, LIU C W, DUAN F J, et al. Analysis of factors influencing accuracy in line-structured light three dimensional surface measurement systems[J]. Acta Optica Sinica, 2024, 44(21): 2112001. (in Chinese). doi: 10.3788/AOS241065
|
[2] |
XU J, ZHANG S. Status, challenges, and future perspectives of fringe projection profilometry[J]. Optics and Lasers in Engineering, 2020, 135: 106193. doi: 10.1016/j.optlaseng.2020.106193
|
[3] |
王建华, 杨延西, 徐鹏, 等. 基于双2+1相移法的高动态范围三维测量[J]. 光学学报,2023,43(20):2012001. doi: 10.3788/AOS230809
WANG J H, YANG Y X, XU P, et al. High dynamic range 3D measurement based on double 2+1 phase-shifting method[J]. Acta Optica Sinica, 2023, 43(20): 2012001. (in Chinese). doi: 10.3788/AOS230809
|
[4] |
ZHU ZH M, LIU H R, ZHANG J, et al. Calibration method of line-structured light sensors based on a hinge-connected target with arbitrary pinch angles[J]. Applied Optics, 2023, 62(7): 1695-1703.
|
[5] |
王永红, 张倩, 胡寅, 等. 显微条纹投影小视场三维表面成像技术综述[J]. 中国光学,2021,14(3):447-457. doi: 10.37188/CO.2020-0199
WANG Y H, ZhANG Q, HU Y, et al. 3D small-field surface imaging based on microscopic fringe projection profilometry: a review[J]. Chinese Optics, 2021, 14(3): 447-457. (in Chinese). doi: 10.37188/CO.2020-0199
|
[6] |
SERVIN M, QUIROGA J A, PADILLA J M, et al. Fringe Pattern Analysis for Optical Metrology: Theory, Algorithms, and Applications[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co KGaA, 2014.
|
[7] |
GORTHI S S, RASTOGI P. Fringe projection techniques: whither we are?[J] Optics and Lasers in Engineering, 2010, 48(2): 133-140.
|
[8] |
AGARWAL N, WANG CH X, KEMAO Q. Windowed Fourier ridges for demodulation of carrier fringe patterns with nonlinearity: a theoretical analysis[J]. Applied Optics, 2018, 57(21): 6198-6206. doi: 10.1364/AO.57.006198
|
[9] |
PATORSKI K, POKORSKI K. Examination of singular scalar light fields using wavelet processing of fork fringes[J]. Applied Optics, 2011, 50(5): 773-781. doi: 10.1364/AO.50.000773
|
[10] |
ZHAO Q, TANG CH, MIN X, et al. Dynamic shape measurement for objects with patterns by Fourier fringe projection profilometry based on variational decomposition and multi-scale Retinex[J]. Applied Optics, 2021, 60(33): 10322-10331. doi: 10.1364/AO.438992
|
[11] |
QIAN J M, FENG SH J, LI Y X, et al. Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry[J]. Optics Letters, 2020, 45(7): 1842-1845. doi: 10.1364/OL.388994
|
[12] |
RI S, AGARWAL N, WANG Q H, et al. Comparative study of sampling moiré and windowed Fourier transform techniques for demodulation of a single-fringe pattern[J]. Applied Optics, 2018, 57(36): 10402-10411. doi: 10.1364/AO.57.010402
|
[13] |
ZHONG J G, WENG J W, Phase retrieval of optical fringe patterns from the ridge of a wavelet transform[J]. Optics Letters, 2005, 30(19): 2560-2562.
|
[14] |
ZHONG J G, WENG J W. Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry[J]. Applied Optics, 2004, 43(26): 4993-4998. doi: 10.1364/AO.43.004993
|
[15] |
RIVERA M, HERNANDEZ-LOPEZ F J, GONZALEZ A. Phase unwrapping by accumulation of residual maps[J]. Optics and Lasers in Engineering, 2015, 64: 51-58. doi: 10.1016/j.optlaseng.2014.07.005
|
[16] |
ZHANG Q C, HAN Y, WU Y S. Comparison and combination of three spatial phase unwrapping algorithms[J]. Optical Review, 2019, 26(4): 380-390. doi: 10.1007/s10043-019-00513-7
|
[17] |
SHEN M H, HWANG C H, WANG W CH. Using higher steps phase-shifting algorithms and linear least-squares fitting in white-light scanning interferometry[J]. Optics and Lasers in Engineering, 2015, 66: 165-173. doi: 10.1016/j.optlaseng.2014.09.004
|
[18] |
HE W, XIA L, LIU F. Sparse-representation-based direct minimum L p-norm algorithm for MRI phase unwrapping[J]. Computational and Mathematical Methods in Medicine, 2014, 2014(1): 134058.
|
[19] |
WU H T, CAO Y P, AN H H, et al. A novel phase-shifting profilometry to realize temporal phase unwrapping simultaneously with the least fringe patterns[J]. Optics and Lasers in Engineering, 2022, 153: 107004. doi: 10.1016/j.optlaseng.2022.107004
|
[20] |
ROGALSKI M, PIELACH M, CICONE A, et al. Tailoring 2D fast iterative filtering algorithm for low-contrast optical fringe pattern preprocessing[J]. Optics and Lasers in Engineering, 2022, 155: 107069. doi: 10.1016/j.optlaseng.2022.107069
|
[21] |
HUANG N E, SHEN ZH, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193
|
[22] |
TRUSIAK M, CYWIŃSKA M, MICÓ V, et al. Variational Hilbert quantitative phase imaging[J]. Scientific Reports, 2020, 10(1): 13955. doi: 10.1038/s41598-020-69717-1
|
[23] |
HU M L, CHEN Y, HU H L, et al. Single frame digital phase-shift fringe projection profilometry based on symmetry transform[J]. Optical Engineering, 2024, 63(10): 104106.
|
[24] |
冯维, p徐仕楠, 王恒辉, 等. 逐像素调制的高反光表面三维测量方法[J]. 中国光学,2022,15(3):488-497. doi: 10.37188/CO.2021-0220
FENG W, XU S N, WANG H H, et al. Three-dimensional measurement method of highly reflective surface based on per-pixel modulation[J]. Chinese Optics, 2022, 15(3): 488-497. (in Chinese). doi: 10.37188/CO.2021-0220
|