Turn off MathJax
Article Contents
WANG Tong, XIONG Han, WANG Hua-xin, LAI You-li. Crosshair detection method for orbital angular momentum of vortex beams[J]. Chinese Optics. doi: 10.37188/CO.2024-0209
Citation: WANG Tong, XIONG Han, WANG Hua-xin, LAI You-li. Crosshair detection method for orbital angular momentum of vortex beams[J]. Chinese Optics. doi: 10.37188/CO.2024-0209

Crosshair detection method for orbital angular momentum of vortex beams

cstr: 32171.14.CO.2024-0209
Funds:  Supported by This work was supported by Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135)
More Information
  • Corresponding author: xh1980xh@126.com
  • Received Date: 19 Nov 2024
  • Accepted Date: 18 Feb 2025
  • Available Online: 26 Feb 2025
  • In this paper, a method for vortex beam OAM detection using crosshair diffraction is proposed. The OAM-related main bright spot in the far-field distribution contains most of the energy of the incident beam (50%~84%) and there is no secondary bright spot that interferes with the detection. In contrast, the energy proportion of the main bright spot in the conventional small-hole diffraction method is extremely low, particularly in the far-field main bright spot above the 7th-order topological charge, which contains less than 1% of the energy of the incident beam. Furthermore, as the topological charge level increases, the secondary bright spot becomes more intrusive. Consequently, crosshair measurements are particularly applicable to the detection of weak vortex beams, which has potentially important implications for the development of long-range free-space optical communications.

     

  • loading
  • [1]
    ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
    [2]
    娄岩, 陈纯毅, 赵义武, 等. 高斯涡旋光束在大气湍流传输中的特性研究[J]. 中国光学,2017,10(6):768-776. doi: 10.3788/co.20171006.0768

    LOU Y, CHEN CH Y, ZHAO Y W, et al. Characteristics of Gaussian vortex beam in atmospheric turbulence transmission[J]. Chinese Optics, 2017, 10(6): 768-776. (in Chinese). doi: 10.3788/co.20171006.0768
    [3]
    LIU J, CHEN SH, WANG H Y, et al. Amplifying orbital angular momentum modes in ring-core erbium-doped fiber[J]. Research, 2020, 2020: 7623751.
    [4]
    LIU J Y, ZHANG J X, LIU J, et al. 1-Pbps orbital angular momentum fibre-optic transmission[J]. Light: Science & Applications, 2022, 11(1): 202.
    [5]
    LIU Z Q, ZHANG H K, LIU K G, et al. Data transmission under high scattering based on OAM-basis transmission matrix[J]. Optics Letters, 2022, 47(17): 4580-4583. doi: 10.1364/OL.469688
    [6]
    KONG A R, LEI T, WANG D W, et al. Extending orbital angular momentum multiplexing to radially high orders for massive mode channels in fiber transmission[J]. Optics Letters, 2023, 48(14): 3717-3720. doi: 10.1364/OL.495704
    [7]
    LAMPERSKA W, MASAJADA J, DROBCZYŃSKI S, et al. Optical vortex torque measured with optically trapped microbarbells[J]. Applied Optics, 2020, 59(15): 4703-4707. doi: 10.1364/AO.385167
    [8]
    STUHLMÜLLER N C X, FISCHER T M, DE LAS HERAS D. Colloidal transport in twisted lattices of optical tweezers[J]. Physical Review E, 2022, 106(3-1): 034601.
    [9]
    ZENG K, PU J J, XU X M, et al. Gradient torque and its effect on rotational dynamics of optically trapped non-spherical particles in the elliptic Gaussian beam[J]. Optics Express, 2023, 31(10): 16582-16592. doi: 10.1364/OE.488217
    [10]
    WANG J Y, LI F F, KANG G G. Multiwavelength achromatic super-resolution focusing via a metasurface-empowered controlled generation of focused cylindrically polarized vortex beams[J]. Optics Express, 2022, 30(17): 30811-30821. doi: 10.1364/OE.462900
    [11]
    赵冬娥, 李诺伦, 马亚云, 等. 基于剪切干涉的双涡旋光干涉图样特性研究[J]. 激光与光电子学进展,2021,58(11):1108001.

    ZHAO D E, LI N L, MA Y Y, et al. Characteristics of double-vortex optical interferogram based on shearing interference[J]. Laser & Optoelectronics Progress, 2021, 58(11): 1108001. (in Chinese).
    [12]
    刘泽隆, 李茂月, 卢新元, 等. 高动态范围条纹结构光在机检测技术及应用进展[J]. 中国光学(中英文),2024,17(1):1-18. doi: 10.37188/CO.2023-0068

    LIU Z L, LI M Y, LU X Y, et al. On-machine detection technology and application progress of high dynamic range fringe structured light[J]. Chinese Optics, 2024, 17(1): 1-18. (in Chinese). doi: 10.37188/CO.2023-0068
    [13]
    MA J B, LI P, ZHOU Z H, et al. Characteristics of fork-shaped fringes formed by off-axis interference of two vortex beams[J]. Journal of the Optical Society of America A, 2021, 38(1): 115-123. doi: 10.1364/JOSAA.412404
    [14]
    COX M A, CELIK T, GENGA Y, et al. Interferometric orbital angular momentum mode detection in turbulence with deep learning[J]. Applied Optics, 2022, 61(7): D1-D6. doi: 10.1364/AO.444954
    [15]
    QIN H, FU Q, TAN W, et al. Highly accurate OAM mode detection network for ring Airy Gaussian vortex beams disturbed by atmospheric turbulence based on interferometry[J]. Journal of the Optical Society of America A, 2023, 40(7): 1319-1326. doi: 10.1364/JOSAA.491846
    [16]
    SILVA J G, JESUS-SILVA A J, ALENCAR M A R C, et al. Unveiling Square and triangular optical lattices: a comparative study[J]. Optics Letters, 2014, 39(4): 949-952. doi: 10.1364/OL.39.000949
    [17]
    LAN B, LIU CH, RUI D M, et al. The topological charge measurement of the vortex beam based on dislocation self-reference interferometry[J]. Physica Scripta, 2019, 94(5): 055502. doi: 10.1088/1402-4896/ab03a2
    [18]
    CHEN T CH, LU X Y, ZENG J, et al. Young's double-slit experiment with a partially coherent vortex beam[J]. Optics Express, 2020, 28(25): 38106-38114. doi: 10.1364/OE.410812
    [19]
    MELO L A, JESUS-SILVA A J, CHÁVEZ-CERDA S, et al. Direct measurement of the topological charge in elliptical beams using diffraction by a triangular aperture[J]. Scientific Reports, 2018, 8(1): 6370. doi: 10.1038/s41598-018-24928-5
    [20]
    庄京秋, 熊晗, 虞天成, 等. 基于软边小孔的涡旋光轨道角动量检测研究[J]. 光学 精密工程,2022,30(12):1394-1405. doi: 10.37188/OPE.20223012.1394

    ZHUANG J Q, XIONG H, YU T CH, et al. Orbital angular momentum detection of vortex beam based on soft-edge aperture[J]. Optics and Precision Engineering, 2022, 30(12): 1394-1405. (in Chinese). doi: 10.37188/OPE.20223012.1394
    [21]
    WANG J Q, FU SH Y, SHANG Z J, et al. Adjusted EfficientNet for the diagnostic of orbital angular momentum spectrum[J]. Optics Letters, 2022, 47(6): 1419-1422. doi: 10.1364/OL.443726
    [22]
    LI X J, SUN L M, HUANG J M, et al. Research on orbital angular momentum recognition technology based on a convolutional neural network[J]. Sensors, 2023, 23(2): 971. doi: 10.3390/s23020971
    [23]
    谌娟, 柯熙政, 杨一明. 拉盖尔高斯光的衍射和轨道角动量的弥散[J]. 光学学报,2014,34(4):0427001. doi: 10.3788/AOS201434.0427001

    CHEN J, KE X ZH, YANG Y M. Laguerre-Gaussian beam diffraction and dispersion of the orbital angular momentum[J]. Acta Optica Sinica, 2014, 34(4): 0427001. (in Chinese). doi: 10.3788/AOS201434.0427001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views(87) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return