Citation: | WANG Tao, WANG Xiang-yang, ZHAO Xin-yu, LIU Rui-qi, CAO Yong-gang. Optimized design of 460 mm diameter single axis supported SIC mirror[J]. Chinese Optics. doi: 10.37188/CO.2024-0172 |
The mirror is one of the most important components of ground-based telescopes: its surface accuracy affects the imaging quality, and the stability of the visual axis affects the telescope’s measurement accuracy. It often requires a complex supporting structure to ensure that both indicators are met simultaneously. In order to simplify the support method of the mirror of a ground-based telescope and ensure the imaging quality and accuracy of the telescope, the optimization design of a 460 mm aperture uniaxial supported SIC mirror was studied. First, a uniaxial support scheme for materials with similar linear expansion coefficients and a fan-shaped mirror back structure was determined. Advanced SIC sintering technology was used to prepare anisotropic structures based on the characteristics of the support structure and materials. Combined with optimization design theory, the mirror was designed to be lightweight while meeting the required accuracy. The optimized mirror weighs only 4.82 kg, and the RMS of the horizontal simulation analysis of the mirror is λ/51.4. After actual engineering verification, the accuracy detection results of the horizontal state under the mirror support were found to be better than λ/42. The lightweight effect is significant and meets the requirements of practical use. This research provides a theoretical foundation and technical reserve for engineering projects.
[1] |
王克军, 董吉洪. 空间遥感器Ф2 m量级大口径SiC反射镜镜坯结构设计[J]. 红外与激光工程,2017,46(7):0718005. doi: 10.3788/IRLA201746.0718005
WANG K J, DONG J H. Structural design of Ф2 m-level large-diameter SiC reflector used in space remote sensor[J]. Infrared and Laser Engineering, 2017, 46(7): 0718005. (in Chinese). doi: 10.3788/IRLA201746.0718005
|
[2] |
郭疆, 朱磊, 赵继, 等. 大口径空间反射镜大容差支撑结构设计与优化[J]. 光学 精密工程,2019,27(5):1138-1147. doi: 10.3788/OPE.20192705.1138
GUO J, ZHU L, ZHAO J, et al. Design and optimize of high tolerance support structure for large aperture space mirror[J]. Optics and Precision Engineering, 2019, 27(5): 1138-1147. (in Chinese). doi: 10.3788/OPE.20192705.1138
|
[3] |
王洪浩, 王建立, 陈涛, 等. 地基大口径望远镜重力弯曲引起的指向变化检测与修正[J]. 光学 精密工程,2022,30(23):3021-3030. doi: 10.37188/OPE.20223023.3021
WANG H H, WANG J L, CHEN T, et al. Measurement and calibration of optical axis changes caused by gravity for ground-based large-aperture telescope[J]. Optics and Precision Engineering, 2022, 30(23): 3021-3030. (in Chinese). doi: 10.37188/OPE.20223023.3021
|
[4] |
张景旭. 地基大口径望远镜系统结构技术综述[J]. 中国光学,2012,5(4):327-336.
ZHANG J X. Overview of structure technologies of large aperture ground-based telescope[J]. Chinese Optics, 2012, 5(4): 327-336. (in Chinese).
|
[5] |
董斌超, 张舸. 超轻量化SiC反射镜的制备及性能[J]. 光学 精密工程,2015,23(8):2185-2491. doi: 10.3788/OPE.20152308.2185
DONG B CH, ZHANG G. Fabrication and properties of ultra-lightweight SiC mirror[J]. Optics and Precision Engineering, 2015, 23(8): 2185-2491. (in Chinese). doi: 10.3788/OPE.20152308.2185
|
[6] |
马昕, 刘海韬, 孙逊. 连续纤维增强陶瓷基复合材料连接件的研究进展[J]. 材料工程,2023,51(8):1-11. doi: 10.11868/j.issn.1001-4381.2023.000138
MA X, LIU H T, SUN X. Research progress in continuous fiber reinforced ceramic matrix composite joints[J]. Journal of Materials Engineering, 2023, 51(8): 1-11. (in Chinese). doi: 10.11868/j.issn.1001-4381.2023.000138
|
[7] |
康健, 宣斌, 谢京江. 表面改性碳化硅基底反射镜加工技术现状[J]. 中国光学,2013,6(6):824-833.
KANG J, XUAN B, XIE J J. Manufacture technology status of surface modified silicon carbide mirrors[J]. Chinese Optics, 2013, 6(6): 824-833. (in Chinese).
|
[8] |
邢邵美, 马建平. 碳化硅铝基复合材料的应用与加工[J]. 航天返回与遥感,1998,19(2):45-49.
XING SH M, MA J P. The application and process of SiC/Al composite materials[J]. Spacecraft Recovery & Remote Sensing, 1998, 19(2): 45-49. (in Chinese).
|
[9] |
祝汉旺, 薛向尧, 邵明振, 等. 地基光电成像系统中单芯轴的设计与优化[J]. 红外与激光工程,2024,53(3):20230629. doi: 10.3788/IRLA20230629
ZHU H W, XUE X Y, SHAO M ZH, et al. Design and optimization of a single-core axis in a ground-based photoelectric imaging system[J]. Infrared and Laser Engineering, 2024, 53(3): 20230629. (in Chinese). doi: 10.3788/IRLA20230629
|
[10] |
高世林, 魏梦琦, 张赛, 等. 一种卡塞格林反射系统的光机结构设计与分析[J]. 激光与红外,2024,54(7):1136-1140. doi: 10.3969/j.issn.1001-5078.2024.07.021
GAO SH L, WEI M Q, ZHANG S, et al. The optical-mechanical structure design and analysis of a Cassegrain reflection system[J]. Laser & Infrared, 2024, 54(7): 1136-1140. (in Chinese). doi: 10.3969/j.issn.1001-5078.2024.07.021
|
[11] |
魏钰轩, 王振宇, 李治国, 等. 星载二维转台U型架结构轻量化与优化设计[J]. 中国光学(中英文),2024,17(4):896-908. doi: 10.37188/CO.2023-0227
WEI Y X, WANG ZH Y, LI ZH G, et al. Lightweight and optimized U-frame design for space-borne two-dimensional turntable[J]. Chinese Optics, 2024, 17(4): 896-908. (in Chinese). doi: 10.37188/CO.2023-0227
|
[12] |
VUKOBRATOVICH D. Introduction to Optomechanical Design[M]. US: SPIE Short Course SC014, 2003. (查阅网上资料, 未找到本条文献信息, 请确认) .
|
[13] |
孙景旭, 谢虹波, 李淑贤, 等. 轻小型全铝高分相机[J]. 中国光学(中英文),2023,16(6):1450-1462. doi: 10.37188/CO.2023-0062
SUN J X, XIE H B, LI SH X, et al. All-aluminum high-resolution camera with lightweight and compact size[J]. Chinese Optics, 2023, 16(6): 1450-1462. (in Chinese). doi: 10.37188/CO.2023-0062
|