Turn off MathJax
Article Contents
HAN Yao-hui, WANG Kun, ZHU You-qiang, LIU Xin-yue. Photonic-integrated interferometric array field-of-view splicing subaperture optical path design[J]. Chinese Optics. doi: 10.37188/CO.2024-0030
Citation: HAN Yao-hui, WANG Kun, ZHU You-qiang, LIU Xin-yue. Photonic-integrated interferometric array field-of-view splicing subaperture optical path design[J]. Chinese Optics. doi: 10.37188/CO.2024-0030

Photonic-integrated interferometric array field-of-view splicing subaperture optical path design

doi: 10.37188/CO.2024-0030
Funds:  Supported by National Natural Science Foundation of China (No. 12204476)
More Information
  • Corresponding author: liuxinyue@ciomp.ac.cn
  • Received Date: 05 Feb 2024
  • Accepted Date: 15 Apr 2024
  • Available Online: 07 May 2024
  • The photonic integrated interferometric imaging system generally adds single-mode fiber arrays at the focal plane of the subaperture, and completes the large-field-of-view splicing imaging by receiving beams with different field-of-view angles, but the direct use of fiber arrays leads to the discontinuity of the imaging field-of-view, the focal length of the subaperture becomes longer, and the thickness is increased substantially. To address the above problems, this paper proposes a combination of microlens arrays and fiber optic arrays to subdivide the subaperture image plane to achieve a seamless splicing of the field of view, and through the combination of the telephoto objective lens and the three-lens spatial compression plate significantly reduces the overall thickness of the subaperture array. The design results show that by adding 65*65 microlens array in front of the fiber array to focus the beam twice to achieve the system field of view seamless splicing, the field of view is expanded 65 times, the full field of view is 0.0489 °, the efficiency of spatial optical coupling in the center of each fiber in the single-mode fiber array is not less than 40% when the visible light is incident, and after adding the spatial compression plate to compress the free-space light path, the overall thickness of the system achieves one order of magnitude compression. The system in the realization of photonic integrated interference imaging system large field of view seamless splicing imaging at the same time, for the solution of the problem of ultra-long focal length lens thickness is too large to provide a new way of thinking.

     

  • loading
  • [1]
    BORN M, WOLF E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. 7th ed. Cambridge: Cambridge University Press, 1999.
    [2]
    苏云, 葛婧菁, 王业超, 等. 航天高分辨率对地光学遥感载荷研究进展[J]. 中国光学(中英文),2023,16(2):258-282. doi: 10.37188/CO.2022-0085

    SU Y, GE J J, WANG Y CH, et al. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J]. Chinese Optics, 2023, 16(2): 258-282. (in Chinese). doi: 10.37188/CO.2022-0085
    [3]
    KENDRICK R, DUNCAN A, WILM J, et al. Flat panel space based space surveillance sensor[C]. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2013. (查阅网上资料, 未找到本条文献出版社信息, 请确认补充) .
    [4]
    BADHAM K, KENDRICK R L, WUCHENICH D, et al. Photonic integrated circuit-based imaging system for SPIDER[C]. Proceedings of 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), IEEE, 2017: 1-5.
    [5]
    DUNCAN A, KENDRICK R, THURMAN S, et al. SPIDER: next generation chip scale imaging sensor[C]. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2015: 27. (查阅网上资料, 未找到本条文献出版社信息, 请确认补充) .
    [6]
    SCOTT R P, SU T H, OGDEN C, et al. Demonstration of a photonic integrated circuit for multi-baseline interferometric imaging[C]. Proceedings of 2014 IEEE Photonics Conference, IEEE, 2014: 1-2.
    [7]
    CHEN H, ON M B, YUN-JHU-LEE, et al. Photonic Interferometric Imager with monolithic silicon CMOS photonic integrated circuits[C]. Optical Fiber Communication Conference 2022, Optica Publishing Group, 2022: Tu2I. 2.
    [8]
    GAO W P, YUAN Y, WANG X R, et al. Quantitative analysis and optimization design of the segmented planar integrated optical imaging system based on an inhomogeneous multistage sampling lens array[J]. Optics Express, 2021, 29(8): 11869-11884. doi: 10.1364/OE.421298
    [9]
    WANG K, ZHU Y Q, AN Q CH, et al. Even sampling photonic-integrated interferometric array for synthetic aperture imaging[J]. Optics Express, 2022, 30(18): 32119-32128. doi: 10.1364/OE.468499
    [10]
    于海滨, 陈蓓曦, 潘枝峰, 等. 光子集成干涉成像系统微透镜排布设计与图像复原[J]. 应用光学,2022,43(2):213-220. doi: 10.5768/JAO202243.0201005

    YU H B, CHEN B X, PAN ZH F, et al. Arrangement of microlens and image restoration technology of photon integrated interferometric imaging system[J]. Journal of Applied Optics, 2022, 43(2): 213-220. (in Chinese). doi: 10.5768/JAO202243.0201005
    [11]
    CHEN T B, ZENG X F, ZHANG ZH Y, et al. REM: a simplified revised entropy image reconstruction for photonics integrated interference imaging system[J]. Optics Communications, 2021, 501: 127341. doi: 10.1016/j.optcom.2021.127341
    [12]
    GOODMAN J W. Statistical Optics[M]. Hoboken: John Wiley & Sons, 2015.
    [13]
    GUYON O. Wide field interferometric imaging with single-mode fibers[J]. Astronomy & Astrophysics, 2002, 387(1): 366-378.
    [14]
    RUILIER C. Degraded light coupling into single-mode fibers[J]. Proceedings of SPIE, 1998, 3350: 319-329. doi: 10.1117/12.317094
    [15]
    SORENSEN N J, WEIL M T, LUNDEEN J S. Large-scale optical compression of free-space using an experimental three-lens spaceplate[J]. Optics Express, 2023, 31(12): 19766-19776. doi: 10.1364/OE.487255
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(8)

    Article views(38) PDF downloads(4) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return