Turn off MathJax
Article Contents
ZHANG Yun-hao, LIU Kui, GAO Jiang-rui, WANG Jun-min. Investigation of characteristics of a DFB laser diode with feedback from a fiber Bragg grating based long external cavity[J]. Chinese Optics. doi: 10.37188/CO.2024-0016
Citation: ZHANG Yun-hao, LIU Kui, GAO Jiang-rui, WANG Jun-min. Investigation of characteristics of a DFB laser diode with feedback from a fiber Bragg grating based long external cavity[J]. Chinese Optics. doi: 10.37188/CO.2024-0016

Investigation of characteristics of a DFB laser diode with feedback from a fiber Bragg grating based long external cavity

doi: 10.37188/CO.2024-0016
Funds:  Supported by National Natural Science Foundation of China (No. 11974226)
More Information
  • Corresponding author: wwjjmm@sxu.edu.cn
  • Received Date: 15 Jan 2024
  • Accepted Date: 08 Mar 2024
  • Available Online: 10 May 2024
  • Narrow linewidth lasers are the basic components of spectroscopy and precision metrology and other experiments. Because semiconductor laser is very sensitive to external optical feedback, the phase noise of semiconductor laser can be suppressed by using the high bandwidth of optical feedback, and then the linewidth can be narrowed. So we use fiber Bragg grating as feedback element and build a long external cavity feedback loop. In order to reduce the influence of external environment temperature fluctuation and air flow disturbance, we control the temperature of the fiber of the feedback optical path. Then the maximum temperature fluctuation within 1 hour is reduced from 0.039 °C to 0.003 °C, and the variance of temperature fluctuation is reduced by two orders of magnitude. In addition, we also test the effect of feedback bandwidth on laser linewidth. Although the bandwidth of the fiber Bragg grating used in our experiment is much larger than the free-running laser linewidth, we still observe that the laser linewidth is narrowed, and the smaller the bandwidth of the fiber Bragg grating, the narrower the laser linewidth. For this phenomenon, we believe that there should be a negative feedback mechanism in the feedback loop, which can stabilize the laser linewidth to a certain slope of the feedback spectrum, so the narrower the feedback bandwidth of the fiber grating, the larger the slope of the feedback spectrum, the more sensitive the feedback. In addition, by changing the feedback power of FBG in the range of 0~1 mW, we observed that at the reflected power of 0.8 mW, the optical feedback narrowed the laser linewidth from the free-running 100.5 kHz to the narrowest 11.5 kHz, and at the reflected power of 1 mW, phase noise in the range of 0.2 kHz to 2 MHz is suppressed by about 22 dB.

     

  • loading
  • [1]
    LIN Q, VAN CAMP M A, ZHANG H, et al. Long-external-cavity distributed Bragg reflector laser with subkilohertz intrinsic linewidth[J]. Optics Letters, 2012, 37(11): 1989-1991. doi: 10.1364/OL.37.001989
    [2]
    KAPASI D P, EICHHOLZ J, MCRAE T, et al. Tunable narrow-linewidth laser at 2 μm wavelength for gravitational wave detector research[J]. Optics Express, 2020, 28(3): 3280-3288. doi: 10.1364/OE.383685
    [3]
    ZHAO Y, LI Y, WANG Q, et al. 100-Hz linewidth diode laser with external optical feedback[J]. IEEE Photonics Technology Letters, 2012, 24(20): 1795-1798. doi: 10.1109/LPT.2012.2214029
    [4]
    刘云凤, 梁伟. 自注入锁定外腔超窄线宽半导体激光[J]. 中国激光,2021,48(17):1715001. doi: 10.3788/CJL202148.1715001

    LIU Y F, LIANG W. Compact narrow linewidth external cavity semiconductor laser realized by self-injection locking to Fabry-Perot cavity[J]. Chinese Journal of Lasers, 2021, 48(17): 1715001. (in Chinese). doi: 10.3788/CJL202148.1715001
    [5]
    RAUCH S, SACHER J. Compact Bragg grating stabilized ridge waveguide laser module with a power of 380 mW at 780 nm[J]. IEEE Photonics Technology Letters, 2015, 27(16): 1737-1740. doi: 10.1109/LPT.2015.2438545
    [6]
    KONG J, LUCIVERO V G, JIMÉNEZ-MARTÍNEZ R, et al. Long-term laser frequency stabilization using fiber interferometers[J]. Review of Scientific Instruments, 2015, 86(7): 073104. doi: 10.1063/1.4926345
    [7]
    孙广伟, 魏芳, 张丽, 等. 基于保偏光纤光栅的低噪声外腔半导体激光器[J]. 中国激光,2018,45(6):0601004. doi: 10.3788/CJL201845.0601004

    SUN G W, WEI F, ZHANG L, et al. Low-noise external cavity semiconductor lasers based on polarization-maintaining fiber Bragg gratings[J]. Chinese Journal of Lasers, 2018, 45(6): 0601004. (in Chinese). doi: 10.3788/CJL201845.0601004
    [8]
    潘碧玮, 余力强, 陆丹, 等. 20 kHz窄线宽光纤光栅外腔半导体激光器[J]. 中国激光,2015,42(5):0502007. doi: 10.3788/CJL201542.0502007

    PAN B W, YU L Q, LU D, et al. 20 kHz narrow linewidth Fiber Bragg grating external cavity semiconductor laser[J]. Chinese Journal of Lasers, 2015, 42(5): 0502007. (in Chinese). doi: 10.3788/CJL201542.0502007
    [9]
    SAMUTPRAPHOOT P, WEBER S, LIN Q, et al. Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback[J]. Optics Express, 2014, 22(10): 11592-11599. doi: 10.1364/OE.22.011592
    [10]
    HILL K O, FUJII Y, JOHNSON D C, et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10): 647-649. doi: 10.1063/1.89881
    [11]
    白建东, 王杰英, 王军民. 基于光纤延时声光频移自差拍法快速测量激光线宽[J]. 激光与光电子学进展,2016,53(6):061407.

    BAI J D, WANG J Y, WANG J M. Rapid measurement of laser linewidth based on Fiber-Delayed AOM-shifted self-heterodyne scheme[J]. Laser & Optoelectronics Progress, 2016, 53(6): 061407. (in Chinese).
    [12]
    尹增谦, 武臣, 宫琬钰, 等. Voigt线型函数及其最大值的研究[J]. 物理学报,2013,62(12):123301. doi: 10.7498/aps.62.123301

    YIN Z Q, WU CH, GONG W Y, et al. Voigt profile function and its maximum[J]. Acta Physica Sinica, 2013, 62(12): 123301. (in Chinese). doi: 10.7498/aps.62.123301
    [13]
    HENRY C. Phase noise in semiconductor lasers[J]. Journal of Lightwave Technology, 1986, 4(3): 298-311. doi: 10.1109/JLT.1986.1074721
    [14]
    AOYAMA K, YOKOTA N, YASAKA H. Strategy of optical negative feedback for narrow linewidth semiconductor lasers[J]. Optics Express, 2018, 26(16): 21159-21169. doi: 10.1364/OE.26.021159
    [15]
    齐翔羽. 窄线宽半导体激光器相频噪声和线宽特性研究[D]. 长春: 长春理工大学, 2019.

    QI X Y. Research on phase-frequency noise and linewidth characteristics of narrow linewidth semiconductor laser[D]. Changchun: Changchun University of Science and Technology, 2019. (in Chinese).
    [16]
    张云, 张天才, 李廷鱼, 等. 法布里-珀罗腔对相位噪声测量的影响[J]. 光学学报,2000,20(4):465-471.

    ZHANG Y, ZHANG T C, LI T Y, et al. Phase noise measurement by F-P cavity[J]. Acta Optica Sinica, 2000, 20(4): 465-471. (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(59) PDF downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return