Turn off MathJax
Article Contents
SONG Ming-zhu, GUO Rong, LI Li-zhou, TAO Shu-ping, CHEN Yan-tong, WANG Jun-sheng. Sea surface glint suppression method based on polarization feature reconstruction[J]. Chinese Optics. doi: 10.37188/CO.2024-0008
Citation: SONG Ming-zhu, GUO Rong, LI Li-zhou, TAO Shu-ping, CHEN Yan-tong, WANG Jun-sheng. Sea surface glint suppression method based on polarization feature reconstruction[J]. Chinese Optics. doi: 10.37188/CO.2024-0008

Sea surface glint suppression method based on polarization feature reconstruction

doi: 10.37188/CO.2024-0008
Funds:  Supported by the National Natural Science Foundation of China (No. 62205046, No. 62075219, No. 52171343); Key Technological Research Projects of Jilin Province (No. 20220201076GX); Fundamental Research Funds for the Central Universities (No. 3132023230, No. 3132023506); Dalian Youth Science and Technology Star Project Support Program (No. 2023RQ021)
More Information
  • Corresponding author: wangjsh@dlmu.edu.cn
  • Received Date: 09 Jan 2024
  • Accepted Date: 18 Mar 2024
  • Available Online: 17 May 2024
  • Solar glint is a significant factor influencing sea surface target detection. For land observation platforms, a sea surface glint suppression method based on the reconstruction of common characteristics of linearly polarized images is proposed using the polarization characteristics of glints. The proposed method uses a focal plane polarization camera to obtain four-channel linear polarized images, calculates the scene’s polarization information, and generates a glint suppression image. Based on suppressing scene glint with polarization information combined with the characteristics of linear polarization images, the light intensity components of the glint suppression image are decomposed into common and characteristic components, and new weight factors are given to obtain the reconstructed glint suppression image. The results of field polarization experiments show that the maximum relative decrease in the proportion of saturated pixels in the reconstructed glint suppression image compared to the intensity image was 79.07%, and the maximum relative increase in spatial frequency and contrast were 73.77% and 172.73%, respectively. The method proposed in this paper effectively suppresses the glint noise in the sea scene and performs well in restoring background detail information.


  • loading
  • [1]
    LYNCH D K, DEARBORN D S P, LOCK J A. Glitter and glints on water[J]. Applied Optics, 2011, 50(28): F39-F49. doi: 10.1364/AO.50.000F39
    OTTAVIANI M, MERCK C, LONG S, et al. Time-resolved polarimetry over water waves: relating glints and surface statistics[J]. Applied Optics, 2008, 47(10): 1638-1648. doi: 10.1364/AO.47.001638
    李岩松, 赵慧洁, 李娜, 等. 基于中红外偏振的海面太阳耀光背景下的目标探测[J]. 中国激光,2022,49(19):1910004. doi: 10.3788/CJL202249.1910004

    LI Y S, ZHAO H J, LI N, et al. Detection of marine targets covered in sun glint based on mid-infrared polarization[J]. Chinese Journal of Lasers, 2022, 49(19): 1910004. (in Chinese). doi: 10.3788/CJL202249.1910004
    KAY S, HEDLEY J, LAVENDER S. Sun glint estimation in marine satellite images: a comparison of results from calculation and radiative transfer modeling[J]. Applied Optics, 2013, 52(23): 5631-5639. doi: 10.1364/AO.52.005631
    SCHOLL V, GERACE A. Removing glint with video processing to enhance underwater target detection[C]. IEEE Western New York Image Processing Workshop (WNYIPW), IEEE, 2013: 18-21.
    COX C, MUNK W. Measurement of the roughness of the sea surface from photographs of the Sun’s glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838-850. doi: 10.1364/JOSA.44.000838
    COOPER A W, LENTZ W J, WALKER P L, et al. Infrared polarization measurements of ship signatures and background contrast[J]. Proceedings of SPIE, 1994, 2223: 300-309. doi: 10.1117/12.177924
    WANG G C, WANG J L, ZHANG ZH D, et al. Performance of eliminating sun glints reflected off wave surface by polarization filtering under influence of waves[J]. Optik, 2016, 127(5): 3143-3149. doi: 10.1016/j.ijleo.2015.12.057
    LIANG J A, WANG X, HE S, et al. Sea surface clutter suppression method based on time-domain polarization characteristics of sun glint[J]. Optics Express, 2019, 27(3): 2142-2158. doi: 10.1364/OE.27.002142
    AVRAHAMY R, MILGROM B, ZOHAR M, et al. Improving object imaging with sea glinted background using polarization method: analysis and operator survey[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8764-8774. doi: 10.1109/TGRS.2019.2922827
    周俊焯, 郝佳, 余晓畅, 等. 面向偏振成像的超构表面研究进展[J]. 中国光学(中英文),2023,16(5):973-995. doi: 10.37188/CO.2022-0234

    ZHOU J ZH, HAO J, YU X CH, et al. Recent advances in metasurfaces for polarization imaging[J]. Chinese Optics, 2023, 16(5): 973-995. (in Chinese). doi: 10.37188/CO.2022-0234
    DE JONG A N, SCHWERING P B W, FRITZ P J, et al. Optical characteristics of small surface targets, measured in the False Bay, South Africa; June 2007[J]. Proceedings of SPIE, 2009, 7300: 730003. doi: 10.1117/12.816859
    ZHAO H J, JI ZH, ZHANG Y, et al. Mid-infrared imaging system based on polarizers for detecting marine targets covered in sun glint[J]. Optics Express, 2016, 24(15): 16396-16409. doi: 10.1364/OE.24.016396
    张卫国. 海面太阳耀光背景下的偏振探测技术[J]. 中国光学,2018,11(2):231-236. doi: 10.3788/co.20181102.0231

    ZHANG W G. Application of polarization detection technology under the background of sun flare on sea surface[J]. Chinese Optics, 2018, 11(2): 231-236. (in Chinese). doi: 10.3788/co.20181102.0231
    朱鹤骞, 曲宏松. 海面背景耀光的自适应抑制系统[J]. 光学学报,2022,42(12):1201006. doi: 10.3788/AOS202242.1201006

    ZHU H Q, QU H S. Adaptive suppression system of sea background flare[J]. Acta Optica Sinica, 2022, 42(12): 1201006. (in Chinese). doi: 10.3788/AOS202242.1201006
    陈卫, 乔延利, 孙晓兵, 等. 基于偏振辐射图融合的水面太阳耀光抑制方法[J]. 光学学报,2019,39(5):0529001. doi: 10.3788/AOS201939.0529001

    CHEN W, QIAO Y L, SUN X B, et al. Method for water surface sun glint suppression based on polarized radiation image fusion[J]. Acta Optica Sinica, 2019, 39(5): 0529001. (in Chinese). doi: 10.3788/AOS201939.0529001
    LIANG J A, WANG X, FANG Y J, et al. Water surface-clutter suppression method based on infrared polarization information[J]. Applied Optics, 2018, 57(16): 4649-4658. doi: 10.1364/AO.57.004649
    叶松, 屈文学, 李树, 等. 基于偏振时域特性的海面耀光抑制方法[J]. 光学学报,2021,41(10):1001003. doi: 10.3788/AOS202141.1001003

    YE S, QU W X, LI SH, et al. Sea surface glint-suppression method based on the polarization time-domain characteristics[J]. Acta Optica Sinica, 2021, 41(10): 1001003. (in Chinese). doi: 10.3788/AOS202141.1001003
    赵峰, 程喜萌, 冯斌, 等. 分焦平面偏振图像插值算法的比较研究[J]. 激光与光电子学进展,2020,57(16):161014.

    ZHAO F, CHENG X M, FENG B, et al. Comparison research of interpolation algorithms for division of focal plane polarization image[J]. Laser & Optoelectronics Progress, 2020, 57(16): 161014. (in Chinese).
    史浩东, 许家伟, 张健, 等. 强光背景下主动偏振成像方法研究[J]. 中国光学(中英文), doi: 10.37188/CO.2023-0151.

    SHI H D, XU J W, ZHANG J, et al. A study of active polarization imaging method under strong light background[J]. Chinese Optics, doi: 10.37188/CO.2023-0151. (in Chinese).
    宿德志, 刘亮, 王坤, 等. 基于偏振差分图像的海天线检测方法[J]. 中国光学(中英文),2023,16(3):596-606. doi: 10.37188/CO.2022-0181

    SU D ZH, LIU L, WANG K, et al. Sea-sky-line detection method based on polarization difference images[J]. Chinese Optics, 2023, 16(3): 596-606. (in Chinese). doi: 10.37188/CO.2022-0181
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(39) PDF downloads(3) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint