Turn off MathJax
Article Contents
ZHAO Hang-yu, WANG Dao-bin, ZHANG Shuo, HUANG Quan-sheng, WEN Kun, LI Guang-fu, YUAN Li-hua. Laser phase noise suppression method for a CO- OFDM-OQAM communication system with real-imaginary-alternate pilots[J]. Chinese Optics. doi: 10.37188/CO.2023-0230
Citation: ZHAO Hang-yu, WANG Dao-bin, ZHANG Shuo, HUANG Quan-sheng, WEN Kun, LI Guang-fu, YUAN Li-hua. Laser phase noise suppression method for a CO- OFDM-OQAM communication system with real-imaginary-alternate pilots[J]. Chinese Optics. doi: 10.37188/CO.2023-0230

Laser phase noise suppression method for a CO- OFDM-OQAM communication system with real-imaginary-alternate pilots

doi: 10.37188/CO.2023-0230
Funds:  Supported by National Natural Science Foundation of China (No. 62141505, No. 61367007); The Natural Science Foundation of Gansu Province (No. 20JR10RA154)
  • Received Date: 20 Dec 2023
  • Accepted Date: 29 Feb 2024
  • Available Online: 02 Apr 2024
  • In this paper, a phase noise suppression algorithm based on real-imaginary-alternate pilots was proposed for a coherent optical orthogonal frequency division multiplexing communication system with offset quadrature amplitude modulation (CO-OFDM-OQAM). The algorithm uses the properties of laser phase noise and the symmetry law of the intrinsic imaginary interference (IMI) to design real-imaginary-alternate pilots. In combination with a linear fitting, it is able to accurately estimate the common phase error (CPE) for CO-OFDM-OQAM. As the compensation was performed in the frequency domain, the computational complexity was significantly reduced compared to the time-domain phase noise suppression algorithms. We built a numerical simulation platform for a polarization multiplexed CO-OFDM-OQAM system with an effective bit rate of 65 GBits/s. Through it, the suppression effect of the proposed method on phase noise was examined. The transmission performance of the system with different laser linewidths and number of subcarriers was investigated. The results obtained confirm that the linewidths required to reach the FEC limit for BER are equal to 801.1, 349, and 138.4 KHz for a fixed OSNR of 25 dB and a total number of subcarriers of 256, 512, and 1024, respectively. For the system using a 16-QAM modulation format with a number of subcarriers of 256 or 512, it compensates well for the laser phase noise without affect the power peak-to-average ratio.

     

  • loading
  • [1]
    XIANG B Q, LI F. Joint cancellation of phase noise and clipping noise for OFDM[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 1806-1814. doi: 10.1109/TVT.2022.3207622
    [2]
    HU SH CH, KANG K, WANG H F, et al. Low complexity blind detection in OFDM systems with phase noise[J]. Digital Signal Processing, 2022, 129: 103638. doi: 10.1016/j.dsp.2022.103638
    [3]
    徐宪莹, 岳殿武. 可见光通信中正交频分复用调制技术[J]. 中国光学,2021,14(3):516-527. doi: 10.37188/CO.2020-0051

    XU X Y, YUE D W. Orthogonal frequency division multiplexing modulation techniques in visible light communication[J]. Chinese Optics, 2021, 14(3): 516-527. (in Chinese). doi: 10.37188/CO.2020-0051
    [4]
    KESKIN M F, WYMEERSCH H, KOIVUNEN V. Monostatic sensing with OFDM under phase noise: from mitigation to exploitation[J]. IEEE Transactions on Signal Processing, 2023, 71: 1363-1378. doi: 10.1109/TSP.2023.3266976
    [5]
    DODANE D, SANTACRUZ J P, BOURDERIONNET J, et al. Optical phase-locked loop phase noise in 5G mm-wave OFDM ARoF systems[J]. Optics Communications, 2023, 526: 128872. doi: 10.1016/j.optcom.2022.128872
    [6]
    XUE ZH J, LI SH Y, LI J D, et al. OFDM radar and communication joint system using opto-electronic oscillator with phase noise degradation analysis and mitigation[J]. Journal of Lightwave Technology, 2022, 40(13): 4101-4109. doi: 10.1109/JLT.2022.3156573
    [7]
    管海军, 刘云清, 张凤晶. 基于数字相位恢复算法的正交相移键控自由空间相干光通信系统[J]. 中国光学,2019,12(5):1131-1138. doi: 10.3788/co.20191205.1131

    GUAN H J, LIU Y Q, ZHANG F J. Coherent free-space optical communication system with quadrature phase-shift keying modulation using a digital phase recovery algorithm[J]. Chinese Optics, 2019, 12(5): 1131-1138. (in Chinese). doi: 10.3788/co.20191205.1131
    [8]
    SREEDHAR T V S, MEHTA N B. Inter-numerology interference in mixed numerology OFDM systems in time-varying fading channels with phase noise[J]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5473-5485. doi: 10.1109/TWC.2023.3234363
    [9]
    KESKIN M F, MARCUS C, ERIKSSON O, et al. On the impact of phase noise on monostatic sensing in OFDM ISAC systems[C]. 2023 IEEE Radar Conference (RadarConf23), IEEE, 2023: 1-6.
    [10]
    SREEDHAR T V S, MEHTA N B. Refined bounds for inter-carrier interference in OFDM due to time-varying channels and phase noise[J]. IEEE Wireless Communications Letters, 2022, 11(12): 2522-2526. doi: 10.1109/LWC.2022.3207322
    [11]
    ALAGHBARI K A, LIM H S, AZIZ N H A, et al. Design and validation of the physical layer functions of FBMC/OQAM transceiver with improved residual phase error correction[J]. IEEE Access, 2022, 10: 97381-97393. doi: 10.1109/ACCESS.2022.3205405
    [12]
    NGUYEN T H, LOUVEAUX J, GORZA S P, et al. Simple feedforward carrier phase estimation for optical FBMC/OQAM systems[J]. IEEE Photonics Technology Letters, 2016, 28(24): 2823-2826. doi: 10.1109/LPT.2016.2623946
    [13]
    FICKERS J, GHAZISAEIDI A, SALSI M, et al. Multicarrier offset-QAM for Long-Haul coherent optical communications[J]. Journal of Lightwave Technology, 2014, 32(24): 4671-4678. doi: 10.1109/JLT.2014.2361617
    [14]
    TANG H Y, XIANG M, FU S N, et al. Feed-forward carrier phase recovery for offset-QAM Nyquist WDM transmission[J]. Optics Express, 2015, 23(5): 6215-6227. doi: 10.1364/OE.23.006215
    [15]
    LU J N, FU S N, TANG H Y, et al. Vertical blind phase search for low-complexity carrier phase recovery of offset-QAM Nyquist WDM transmission[J]. Optics Communications, 2017, 382: 212-218. doi: 10.1016/j.optcom.2016.07.083
    [16]
    FANG X, ZHANG F. Phase noise estimation and suppression for PDM CO-OFDM/OQAM systems[J]. Journal of Lightwave Technology, 2017, 35(10): 1837-1846. doi: 10.1109/JLT.2017.2665464
    [17]
    NGUYEN T T, LE S T, NISSEL R, et al. Pseudo-pilot coding based phase noise estimation for coherent optical FBMC-OQAM transmissions[J]. Journal of Lightwave Technology, 2018, 36(14): 2859-2867. doi: 10.1109/JLT.2018.2823335
    [18]
    YOU B Y, YANG L, LUO F G, et al. Joint carrier frequency offset and phase noise estimation based on pseudo-pilot in CO-FBMC/OQAM system[J]. IEEE Photonics Journal, 2019, 11(1): 7201611.
    [19]
    NGUYEN T H, PEUCHERET C. Kalman filtering for carrier phase recovery in optical offset-QAM Nyquist WDM systems[J]. IEEE Photonics Technology Letters, 2017, 29(12): 1019-1022. doi: 10.1109/LPT.2017.2701907
    [20]
    WANG X B, YANG L, LUO F G, et al. Adaptive EKF based estimation method for phase noise in CO-OFDM/OQAM system[J]. IEEE Access, 2020, 8: 204931-204940. doi: 10.1109/ACCESS.2020.3037312
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(54) PDF downloads(7) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return