Turn off MathJax
Article Contents
CHEN Jian-jun, WANG Lin-lin, HUO Li-min, KUANG Cui-fang, MAO Lei, ZHENG Chi, YIN Lu. Effects of sinusoidal mid-spatial frequency surface errors on optical transfer function[J]. Chinese Optics. doi: 10.37188/CO.2023-0229
Citation: CHEN Jian-jun, WANG Lin-lin, HUO Li-min, KUANG Cui-fang, MAO Lei, ZHENG Chi, YIN Lu. Effects of sinusoidal mid-spatial frequency surface errors on optical transfer function[J]. Chinese Optics. doi: 10.37188/CO.2023-0229

Effects of sinusoidal mid-spatial frequency surface errors on optical transfer function

doi: 10.37188/CO.2023-0229
Funds:  Natural Science Foundation of Shandong Province (No. ZR2021QF113, No. ZR2021MF081); Outstanding Youth Innovation Team in Shandong Higher Education Institutions (No. 2022KJ162); National Natural Science Foundation of China (No. 62305320)
More Information
  • Objective 

    Mid-spatial frequency surface errors (MSFSE) can cause small angle scattering in optical systems, affecting system performance. In order to determine a reasonable tolerance for MSFSE in optical design and processing, a quantitative study is conducted on the impact of MSFSE on optical transfer function (MTF) of optical systems. Under diffraction-limited conditions, we derive an expression for the influence of MSFSE on the MTF of optical systems and analyze it. Then, we verify the theoretical derivation results through optical design software simulation.

    Method 

    Assuming that the optical system has a sinusoidal MSFSE on the pupil, we perform Fourier transform on the pupil function and square it to obtain the point spread function (PSF), and then perform Fourier transform on the PSF to obtain the optical transfer function (OTF) of the optical system. By taking the mode of OTF, the expression of MTF under the influence of MSFSE can be obtained. By comparing this expression of MTF with the MTF of an optical system without MSFSE under diffraction-limited conditions, the quantitative impact of MSFSE on the MTF of the optical system can be obtained.

    Result 

    Theoretical calculation results indicate that sinusoidal MSFSE can lead to different losses of MTF at different spatial frequencies, and the changes in MTF losses are periodic. The maximum loss ratios of MTF in optical systems caused by sinusoidal MSFSE with peak to valley (PV) of 0.030 μm, 0.095 μm, 0.159 μm and 0.223 μm are 0.89%, 8.80%, 23.48% and 43.31%, respectively. The loss of MTF will increase nonlinearly with the increase of PV of MSFSE. The theoretical calculation results are consistent with the software simulation results.

    Conclusion 

    The research results can provide a theoretical basis for technical personnel in optical design and processing to determine the tolerance of MSFSE of optical elements in imaging systems.

     

  • loading
  • [1]
    张云进, 项华中, 王亚琼, 等. 渐进多焦点自由曲面镜片优化重构[J]. 光学 精密工程,2023,31(6):813-821. doi: 10.37188/OPE.20233106.0813

    ZHANG Y J, XIANG H ZH, WANG Y Q, et al. Optimization and reconstruction of progressive addition free-form surface lens[J]. Optics and Precision Engineering, 2023, 31(6): 813-821. (in Chinese). doi: 10.37188/OPE.20233106.0813
    [2]
    徐乐, 张春雷, 代雷, 等. 高精度非回转对称非球面加工方法研究[J]. 中国光学,2016,9(3):364-370. doi: 10.3788/co.20160903.0364

    XU L, ZHANG CH L, DAI L, et al. Research on manufacturing method of non-rotationally symmetrical aspheric surface with high accuracy[J]. Chinese Optics, 2016, 9(3): 364-370. (in Chinese). doi: 10.3788/co.20160903.0364
    [3]
    田杰文, 叶新, 方伟. 基于自由曲面的辐射定标光源设计[J]. 中国光学,2023,16(1):127-135. doi: 10.37188/CO.2022-0021

    TIAN J W, YE X, FANG W. Design of a radiometric calibration light source based on a freeform reflector[J]. Chinese Optics, 2023, 16(1): 127-135. (in Chinese). doi: 10.37188/CO.2022-0021
    [4]
    DU CH Y, DAI Y F, GUAN CH L, et al. High efficiency removal of single point diamond turning marks on aluminum surface by combination of ion beam sputtering and smoothing polishing[J]. Optics Express, 2021, 29(3): 3738-3753. doi: 10.1364/OE.417537
    [5]
    DENG Y H, HOU X, LI B CH, et al. Review on mid-spatial frequency error suppression in optical components manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2023, 126(11-12): 4827-4847. doi: 10.1007/s00170-023-11408-y
    [6]
    安其昌, 张景旭, 杨飞, 等. 基于结构函数的大口径望远镜中频误差分配研究[J]. 光学 精密工程,2017,25(2):433-440. doi: 10.3788/OPE.20172502.0433

    AN Q CH, ZHANG J X, YANG F, et al. On middle frequency error distribution of large telescope based on structure function[J]. Optics and Precision Engineering, 2017, 25(2): 433-440. (in Chinese). doi: 10.3788/OPE.20172502.0433
    [7]
    HONEYCUTT A, SCHMITZ T L. Surface location error and surface roughness for period-n milling bifurcations[J]. Journal of Manufacturing Science and Engineering, 2017, 139(6): 061010. doi: 10.1115/1.4035371
    [8]
    赵天骄, 乔彦峰, 孙宁, 等. 经纬仪主镜在支撑系统下的面形变化[J]. 中国光学,2017,10(4):477-483. doi: 10.3788/co.20171004.0477

    ZHAO T J, QIAO Y F, SUN N, et al. Surface deformation of theodolite primary mirror under the support system[J]. Chinese Optics, 2017, 10(4): 477-483. (in Chinese). doi: 10.3788/co.20171004.0477
    [9]
    梁子健, 杨甬英, 赵宏洋, 等. 非球面光学元件面型检测技术研究进展与最新应用[J]. 中国光学,2022,15(2):161-186. doi: 10.37188/CO.2021-0143

    LIANG Z J, YANG Y Y, ZHAO H Y, et al. Advances in research and applications of optical aspheric surface metrology[J]. Chinese Optics, 2022, 15(2): 161-186. (in Chinese). doi: 10.37188/CO.2021-0143
    [10]
    AIKENS D M. Origin and evolution of the optics specifications for the National Ignition Facility[J]. Proceedings of SPIE, 1995, 2536: 2-12. doi: 10.1117/12.218410
    [11]
    曾雪锋. 光学表面频段误差对成像质量的影响研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2014.

    ZENG X F. Impact on image performance of surface spatial frequency[D]. Changchun: Changchun Institute of Optics and Fine Mechanics and Physics, Chinese Academy of Sciences, 2014. (in Chinese).
    [12]
    HARVEY J E. Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles[J]. Optical Engineering, 2012, 51(1): 013402. doi: 10.1117/1.OE.51.1.013402
    [13]
    LI L X, LI X CH, CHENG Q, et al. Optimized strategy to restrain the mid-spatial-frequency surface error in computer-controlled optical surfacing[J]. Results in Physics, 2020, 19: 103356. doi: 10.1016/j.rinp.2020.103356
    [14]
    曾雪锋, 张学军. 光学制造中频残差对光学调制传递函数的影响[J]. 激光与光电子学进展,2015,52(7):072202.

    ZENG X F, ZHANG X J. Impact of mid-spatial frequency errors in optical manufacturing on modulation transfer function[J]. Laser & Optoelectronics Progress, 2015, 52(7): 072202. (in Chinese).
    [15]
    XIE CH, REN J L, CHEN SH Y. Sub-aperture stitching method to measure aspherical mirror in phase retrieval[J]. Optical and Quantum Electronics, 2017, 49(11): 353. doi: 10.1007/s11082-017-1189-y
    [16]
    GOODMAN J W. Introduction to Fourier Optics[M]. San Francisco: McGraw-Hill Book Co., 1968. (查阅网上资料, 未能确认本条文献修改是否正确, 请确认) .

    GOODMAN J W. Introduction to Fourier Optics[M]. San Francisco: McGraw-Hill Book Co., 1968. (查阅网上资料, 未能确认本条文献修改是否正确, 请确认).
    [17]
    TAMKIN J M, DALLAS W J, MILSTER T D. Theory of point-spread function artifacts due to structured mid-spatial frequency surface errors[J]. Applied Optics, 2010, 49(25): 4814-4824. doi: 10.1364/AO.49.004814
    [18]
    TAMKIN J M, MILSTER T D, DALLAS W. Theory of modulation transfer function artifacts due to mid-spatial-frequency errors and its application to optical tolerancing[J]. Applied Optics, 2010, 49(25): 4825-4835. doi: 10.1364/AO.49.004825
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views(71) PDF downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return