Turn off MathJax
Article Contents
RUAN Peng, WANG Yu-hai, PAN Qi-kun, SHAO Chun-lei, CHEN Fei, GUO Jin. Study on beam quality of DF laser with inner cavity unstable resonator[J]. Chinese Optics. doi: 10.37188/CO.2023-0210
Citation: RUAN Peng, WANG Yu-hai, PAN Qi-kun, SHAO Chun-lei, CHEN Fei, GUO Jin. Study on beam quality of DF laser with inner cavity unstable resonator[J]. Chinese Optics. doi: 10.37188/CO.2023-0210

Study on beam quality of DF laser with inner cavity unstable resonator

doi: 10.37188/CO.2023-0210
Funds:  Supported by
More Information
  • Laser beam quality is one of the key indicators considered when measuring the performance of laser applications. To meet the application requirements of long-distance optoelectronic countermeasures, this paper researches the design of unstable resonators and beam quality improvement techniques for non-chain DF lasers. Three sets of positive branch confocal unstable resonators with different magnifications are designed. An experimental setup for an unstable inner cavity resonator is constructed with two convex mirror structures: transverse support and longitudinal support. The transverse support structure is equipped with a circulating water-cooling channel. Using 86.5% surrounding energy to define laser beam diameter, the laser beam quality is evaluated with beam quality factor β, and the energy and beam divergence for two support types of convex mirrors are compared. Research has found that, under the same conditions, the laser energy of unstable resonators with longitudinal support is 6% higher than that of the transverse support structure. Still, the far-field divergence angle is 9% larger than that of the transverse support structure. Although the water-cooled transverse support structure has energy shielding, its high thermal stability significantly improves the quality of the laser beam. A beam divergence of θ0.865 = 0.63 mrad with beam quality factor β=1.83 is obtained at M=2.25 with a transverse support unstable resonator. The laser energy under this condition is 2.34 J, the laser pulse width is 88.2 ns, and the peak power reaches 26.5 MW.


  • loading
  • [1]
    KLINGBEIL A E, JEFFRIES J B, HANSON R K. Tunable mid-IR laser absorption sensor for time-resolved hydrocarbon fuel measurements[J]. Proceedings of the Combustion Institute, 2007, 31(1): 807-815. doi: 10.1016/j.proci.2006.07.228
    KLOSNER M, WU C, HELLER D F. Mid-IR Laser system for advanced neurosurgery[J]. Proceedings of SPIE, 2014, 8928: 89280D.
    STARECKI F, CHARPENTIER F, DOUALAN J L, et al. Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers[J]. Sensors and Actuators B: Chemical, 2015, 207: 518-525. doi: 10.1016/j.snb.2014.10.011
    PHAL Y, YEH K, BHARGAVA R. Mid-IR laser-based polarimetric imaging for polymeric and biological applications[J]. Proceedings of SPIE, 2021, 11656: 1165619.
    FROLOV Y N, VELIKANOV S D, LAZARENKO V I, et al. Remote laser analyzer for methane sensing in the air of subterranean spaces[J]. Proceedings of SPIE, 2002, 4722: 140-144. doi: 10.1117/12.472258
    TÖPFER T, PETROV K P, MINE Y, et al. Room-temperature mid-infrared laser sensor for trace gas detection[J]. Applied Optics, 1997, 36(30): 8042-8049. doi: 10.1364/AO.36.008042
    VASIL’EV B I, MANNOUN O. IR differential-absorption lidars for ecological monitoring of the environment[J]. Quantum Electronics, 2006, 36(9): 801-820. doi: 10.1070/QE2006v036n09ABEH006577
    VELIKANOV S D, ELUTIN A S, KUDRYASHOV E A, et al. Use of a DF laser in the analysis of atmospheric hydrocarbons[J]. Quantum Electronics, 1997, 27(3): 273-276. doi: 10.1070/QE1997v027n03ABEH000923
    BRUNET H, MABRU M, VANNIER C. Improved DF performance of a repetitively pulsed HF/DF laser using a deuterated compound[J]. Proceedings of SPIE, 1997, 3092: 494-497. doi: 10.1117/12.270115
    SERAFETINIDES A A, RICKWOOD K R, PAPADOPOULOS A D. Performance studies of a novel design atmospheric pressure pulsed HF/DF laser[J]. Applied Physics B, 1991, 52(1): 46-54. doi: 10.1007/BF00405686
    IGNAT'EV A B, KAZANTSEV S Y, KONONOV I G, et al. On the possibility of controlling the wave front of a wide-aperture HF(DF) laser by the method of Talbot interferometry[J]. Quantum Electronics, 2008, 38(1): 69-72. doi: 10.1070/QE2008v038n01ABEH013546
    PAN Q K, XIE J J, WANG CH R, et al. Non-chain pulsed DF laser with an average power of the order of 100 W[J]. Applied Physics B, 2016, 122(7): 200. doi: 10.1007/s00340-016-6475-z
    顾文珊, 梁小溪, 李红超, 等. 小型化轴流式非链式脉冲氟化氘激光器[J]. 红外与激光工程,2021,50(1):20200082. doi: 10.3788/IRLA20200082

    GU W SH, LIANG X X, LI H CH, et al. Miniaturized axial flow non-chain pulsed deuterium fluoride laser[J]. Infrared and Laser Engineering, 2021, 50(1): 20200082. (in Chinese). doi: 10.3788/IRLA20200082
    TARASENKO V F, PANCHENKO A N. Efficient discharge-pumped non-chain HF and DF lasers[J]. Proceedings of SPIE, 2006, 6101: 61011P. doi: 10.1117/12.643226
    APOLLONOV V V, KAZANTSEV S Y, SAIFULIN A V, et al. Discharge characteristics in a Nonchain HF(DF) laser[J]. Quantum Electronics, 2000, 30(6): 483-485. doi: 10.1070/QE2000v030n06ABEH001747
    VELIKANOV S D, EVDOKIMOV P A, ZAPOL'SKY A F, et al. Pulse periodic HF (DF)-laser of atmospheric pressure with pulse repetition rate up to 2200 Hz[J]. Proceedings of SPIE, 2008, 7131: 71310V. doi: 10.1117/12.817070
    易爱平, 刘晶儒, 唐影, 等. 放电激励重复频率非链式HF激光器[J]. 强激光与粒子束,2011,23(7):1763-1766. doi: 10.3788/HPLPB20112307.1763

    YI A P, LIU J R, TANG Y, et al. Discharge pumped repetition- rate non- chain HF laser[J]. High Power Laser and Particle Beams, 2011, 23(7): 1763-1766. (in Chinese). doi: 10.3788/HPLPB20112307.1763
    朱峰, 黄珂, 周松青, 等. 基于非稳腔的非链式脉冲HF激光光束质量优化[J]. 中国激光,2017,44(4):0401002. doi: 10.3788/CJL201744.0401002

    ZHU F, HUANG K, ZHOU S Q, et al. Laser beam quality optimization of no-chain pulsed HF laser using unstable resonator[J]. Chinese Journal of Lasers, 2017, 44(4): 0401002. (in Chinese). doi: 10.3788/CJL201744.0401002
    阮鹏, 谢冀江, 张来明, 等. 非链式脉冲氟化氘激光器的动力学模拟和实验研究[J]. 中国激光,2013,40(7):0702002. doi: 10.3788/CJL201340.0702002

    RUAN P, XIE J J, ZHANG L M, et al. Dynamical simulation and experimental study of non-chain pulsed DF laser[J]. Chinese Journal of Lasers, 2013, 40(7): 0702002. (in Chinese). doi: 10.3788/CJL201340.0702002
    黄超, 黄珂, 易爱平, 等. 200 W重复频率中红外氟化氢化学激光器[J]. 中国激光,2019,46(8):0801005. doi: 10.3788/CJL201946.0801005

    HUANG CH, HUANG K, YI A P, et al. 200 W Mid-infrared HF chemical laser with repetition rate[J]. Chinese Journal of Lasers, 2019, 46(8): 0801005. (in Chinese). doi: 10.3788/CJL201946.0801005
    APOLLONOV V V, BELEVTSEV A A, FIRSOV K N, et al. Advanced studies on powerful wide-aperture nonchain HF(DF) lasers with a self-sustained volume discharge to initiate chemical reaction[J]. Proceedings of SPIE, 2003, 5120: 529-541.
    谭改娟, 谢冀江, 潘其坤, 等. 非链式脉冲DF激光器非稳腔设计与实验研究[J]. 中国激光,2014,41(1):0102004. doi: 10.3788/CJL201441.0102004

    TANG G J, XIE J J, PAN Q K, et al. Design and experimental investigation on unstable resonator for non-chain pulsed DF laser[J]. Chinese Journal of Lasers, 2014, 41(1): 0102004. (in Chinese). doi: 10.3788/CJL201441.0102004
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views(31) PDF downloads(4) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint