Turn off MathJax
Article Contents
CHEN Chun-yi, CAI Jin-xiang, LI Qiong. Shared secret-key generation from atmospheric MIMO optical channel[J]. Chinese Optics. doi: 10.37188/CO.2023-0202
Citation: CHEN Chun-yi, CAI Jin-xiang, LI Qiong. Shared secret-key generation from atmospheric MIMO optical channel[J]. Chinese Optics. doi: 10.37188/CO.2023-0202

Shared secret-key generation from atmospheric MIMO optical channel

doi: 10.37188/CO.2023-0202
Funds:  Supported by the National Natural Science Foundation of China (No. 62275033);the Natural Science Foundation of Chongqing City of China (No. cstc2021jcyj-msxmX0457)
More Information
  • Shared secret-key extraction from random channel characteristics is an effective approach to ensuring the physical layer security of atmospheric optical channels. The secret-key generation rate and disagreement rate are two issues that attract a lot of attention. Using the random characteristics of atmospheric turbulent optical channels as a shared source of randomness, a secret-key extraction scheme for multiple-input multiple-output (MIMO) atmospheric optical channels is proposed. The alternative singular value decomposition is used to decompose the channel matrix; the correlation between the two channel characteristic sequences obtained by the two legitimate parties is enhanced by carrying out a simple moving average; a channel quantization alternating scheme with a single threshold is used to quantize the resultant channel characteristic sequences. The two legitimate parties generate random controlling sequences for coding mapping based on differential diversity values, which are used in performing coding mapping of the quantized bits of the channel characteristic sequences generated by the channel quantization alternating scheme with a single threshold. The experimental results show that our scheme’s initial key disagreement rate can reach 5.2×10−4 at a signal-to-noise ratio of 30 dB, and that the generated random bit sequences have passed the National Institute of Standards and Technology (NIST) randomness test. This paper’s results are useful in the implementation of secret-key extraction from atmospheric MIMO optical channels.

     

  • loading
  • [1]
    王潋, 周媛媛, 周学军, 等. 泡沫覆盖不规则海面的非均匀空-水信道量子密钥分发[J]. 中国光学(中英文),2019,12(6):1362-1375. doi: 10.3788/co.20191206.1362

    WANG L, ZHOU Y Y, ZHOU X J, et al. Quantum key distribution based on heterogeneous air-water channels with foam-covered irregular sea surfaces[J]. Chinese Optics, 2019, 12(6): 1362-1375. (in Chinese). doi: 10.3788/co.20191206.1362
    [2]
    PARENTI R R, ROTH J M, SHAPIRO J H, et al. Experimental observations of channel reciprocity in single-mode free-space optical links[J]. Optics Express, 2012, 20(19): 21635-21644. doi: 10.1364/OE.20.021635
    [3]
    向磊, 陈纯毅, 姚海峰, 等. 双向大气湍流光信道瞬时衰落相关特性测量[J]. 中国光学(中英文),2019,12(5):1100-1108. doi: 10.3788/co.20191205.1100

    XIANG L, CHEN CH Y, YAO H F, et al. Measurement of instantaneous-fading correlation in bidirectional optical channels through atmospheric turbulence[J]. Chinese Optics, 2019, 12(5): 1100-1108. (in Chinese). doi: 10.3788/co.20191205.1100
    [4]
    CHEN CH Y, YANG H M. Shared secret key generation from signal fading in a turbulent optical wireless channel using common-transverse-spatial-mode coupling[J]. Optics Express, 2018, 26(13): 16422-16441. doi: 10.1364/OE.26.016422
    [5]
    CHEN CH Y. Sample-grouping-based vector quantization for secret key extraction from atmospheric optical wireless channels[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 8905-8918. doi: 10.1109/TWC.2022.3170724
    [6]
    ENDO H, FUJIWARA M, KITAMURA M, et al. Group key agreement over free-space optical links[J]. OSA Continuum, 2020, 3(9): 2525-2543. doi: 10.1364/OSAC.389853
    [7]
    WANG L, AN H N, ZHU H J, et al. MobiKey: mobility-based secret key generation in smart home[J]. IEEE Internet of Things Journal, 2020, 7(8): 7590-7600. doi: 10.1109/JIOT.2020.2986399
    [8]
    黄开枝, 金梁, 钟州. 5G物理层安全技术——以通信促安全[J]. 中兴通讯技术,2019,25(4):43-49.

    HUANG. K ZH, JIN L, ZHONG ZH. 5G physical layer security technology: enhancing security by communication[J]. ZTE Technology Journal, 2019, 25(4): 43-49. (in Chinese)
    [9]
    PREMNATH S N, GOWDA P L, KASERA S K, et al. Secret key extraction using Bluetooth wireless signal strength measurements[C]. 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), IEEE, 2014: 293-301.
    [10]
    高玉威, 熊俊, 郭登科, 等. 面向无人机空地通信的无线信道密钥生成技术研究[J]. 密码学报,2022,9(1):76-87.

    GAO Y W, XIONG J, GUO D K, et al. Design of key generation schemes for aerial communication scene of UAVs[J]. Journal of Cryptologic Research, 2022, 9(1): 76-87. (in Chinese).
    [11]
    WALLACE J W, SHARMA R K. Automatic secret keys from reciprocal MIMO wireless channels: measurement and analysis[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(3): 381-392. doi: 10.1109/TIFS.2010.2052253
    [12]
    HUANG L, GUO D K, XIONG J, et al. An improved CQA quantization algorithm for physical layer secret key extraction[C]. Proceeding of the 2020 International Conference on Wireless Communications and Signal Processing (WCSP), IEEE, 2020: 829-834.
    [13]
    FURQAN H M, HAMAMREH J M, ARSLAN H. Secret key generation using channel quantization with SVD for reciprocal MIMO channels[C]. 2016 International Symposium on Wireless Communication Systems (ISWCS), IEEE, 2016: 597-602.
    [14]
    TANG J, WEN H, SONG H H, et al. Secure MIMO-SVD communications against eavesdroppers with any number of antennas[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11077-11089. doi: 10.1109/TVT.2020.3007430
    [15]
    BAKSI S, POPESCU D C. Secret key generation with precoding and role reversal in MIMO wireless systems[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3104-3112. doi: 10.1109/TWC.2019.2910103
    [16]
    LIU Z H, GUO M, JU Y. Physical layer key generation method based on SVD pre-processing[J]. Journal of Cyber Security and Mobility, 2022, 11(6): 777-794.
    [17]
    ZHAN F R, YAO N M, GAO ZH G, et al. Efficient key generation leveraging wireless channel reciprocity for MANETs[J]. Journal of Network and Computer Applications, 2018, 103: 18-28. doi: 10.1016/j.jnca.2017.11.014
    [18]
    YANG L, GAO Y S, ZHANG J Q, et al. A channel perceiving attack and the countermeasure on long-range IoT physical layer key generation[J]. Computer Communications, 2022, 191: 108-118. doi: 10.1016/j.comcom.2022.04.027
    [19]
    ZHANG J Q, MARSHALL A, HANZO L. Channel-envelope differencing eliminates secret key correlation: LoRa-based key generation in low power wide area networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 12462-12466. doi: 10.1109/TVT.2018.2877201
    [20]
    HAN Q Q, LIU J M, SHEN Z W, et al. Vector partitioning quantization utilizing K-means clustering for physical layer secret key generation[J]. Information Sciences, 2020, 512: 137-160. doi: 10.1016/j.ins.2019.09.076
    [21]
    宋淑男. MIMO信道下密钥生成技术和协议研究[D]. 南京: 南京邮电大学, 2018.

    SONG SH N. Research on the technology and protocol of secret key generation in MIMO channel[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018. (in Chinese).
    [22]
    WALLACE J W, SHARMA R K. Automatic secret keys from reciprocal MIMO wireless channels: measurement and analysis[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(3): 381-392. (查阅网上资料, 本条文献与第11条文献重复, 请确认) .
    [23]
    LU Y J, WU F, HUANG Q Y, et al. Telling secrets in the light: an efficient key extraction mechanism via ambient light[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 186-198. doi: 10.1109/TWC.2020.3023930
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views(78) PDF downloads(6) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return